Section 9.4 Rotation and Systems of Quadratic Equations

Course Number

Instructor

Objective: In this lesson you learned how to eliminate the *xy*-term in equations of conics and classify conics.

Date

Important Vocabulary	Define each term or concept.
Discriminant	

I. Rotation (Pages 690–693)

The general equation of a conic whose axes are rotated so that they are not parallel to either the x-axis or the y-axis contains a(n) ______.

To eliminate this term, you can use a procedure called ______, whose objective is to rotate the *x*- and *y*-axes until they are parallel to the axes of the conic.

The general second-degree equation

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$
 can be rewritten as $A'(x')^2 + C'(y')^2 + D'x' + E'y' + F' = 0$ by rotating the coordinate axes through an angle θ , where cot $2\theta =$ ______.

The coefficients of the new equation are obtained by making the substitutions $x =$ ______ and

What you should learn

How to rotate the coordinate axes to eliminate the *xy*-term in equations of conics

II. Invariants Under Rotation (Pages 694–695)

Invariant under rotation means . . .

What you should learn How to use the discriminant to classify conics The rotation of the coordinate axes through an angle θ that transforms the equation $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ into the form $A'(x')^2 + C'(y')^2 + D'x' + E'y' + F' = 0$ has the following rotation invariants:

- 1)
- 2)
- 3)

The graph of the equation $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ is, except in degenerate cases, determined by its discriminant as follows:

- 1) Ellipse or circle if:
- 2) Parabola if:
- 3) Hyperbola if:

Example 1: Classify the graph of the following conic: $2x^2 + 12xy + 18y^2 - 3y - 5 = 0$

III. Systems of Quadratic Equations (Page 696)

To find the points of intersection of two conics, . . .

What you should learn How to solve systems of quadratic equations

Example 2: Solve the following system of quadratic equations:

$$\begin{cases} 4x^2 + 4y^2 - 36 = 0 \\ x^2 - 3y - 6x + 9 = 0 \end{cases}$$

Homework Assignment

Page(s)

Exercises