Chapter 4 Trigonometric Functions

Section 4.1 Radian and Degree Measure

Objective: In this lesson you learned how to describe an angle and to convert between degree and radian measure.

Course Number	
Instructor	
Date	

Important Vocabulary	Define each term or concept.		
Trigonometry			
Central angle of a circle			
Complementary angles			
Supplementary angles			
Degree			
I. Angles (Page 258)		What you should	
An angle is determined by		How to describe	angles
The initial side of an angle is			
The terminal side of an angle is			
The vertex of an angle is			
An angle is in standard position when .			
A positive angle is generated by a			
rotation; whereas a negative angle is ger	nerated by a		
rotation.			
If two angles are coterminal , then they h	nave		

measure

What you should learn How to use radian

II. Radian Measure (Pages 259–261)
The measure of an angle is determined by
One radian is the measure of a central angle θ that
Algebraically this means that $\theta = \dots$
A central angle of one full revolution (counterclockwise) corresponds to an arc length of $s = $
The radian measure of an angle of one full revolution is radians. A half revolution corresponds to an angle
of radians. Similarly $\frac{1}{4}$ revolution corresponds to
an angle of radians, and $\frac{1}{6}$ revolution
corresponds to an angle of radians.
Angles with measures between 0 and $\pi/2$ radians are angles. Angles with measures between $\pi/2$ and
π radians are angles.
To find an angle that is coterminal to a given angle θ ,
Example 1: Find an angle that is coterminal with $\theta = -\pi/8$.
Example 2: Find the supplement of $\theta = \pi/4$.

A full revolution (counterclockwise) around a circle corresponds to degrees. A half revolution around a circle corresponds to degrees.						What you should learn How to use degree measure and convert		
						between degree and radian measure		
							To convert de	grees to
To convert rac	lians to c	degrees,						
Example 3:	Convert	120° to	radians.					
Example 4:	Convert	9π/8 rac	lians to	degrees.				
Example 5:	Complet and radi		_		•	_	ee	
θ (degrees)	0°		45°		90°		270°	
θ (radians)		$\pi/6$		$\pi/3$		π		
IV. Linear a For a circle of length <i>s</i> given	radius <i>r</i> ,	, a centra	al angle	θ interc	epts an a			What you should learn How to use angles to model and solve real-life problems
radians. Note	that if r =	= 1, then	$s = \theta$, a	nd the r	adian m	easure o	f	
θ equals								
Consider a par of radius r. If . linear speed o	s is the le	ength of						
linear spe	eed =							
If θ is the angle length s , then angular s	the angu					he arc		

Example 6: A 6-inch-diameter gear makes 2.5 revolutions per second. Find the angular speed of the gear in radians per second.

Homework Assignment
Page(s)
Exercises