Section 1.3 Graphs of Functions

Objective: In this lesson you learned how to analyze the graphs of functions.

Important Vocabulary: Define each term or concept.

Graph of a function
Greatest integer function
Step function
Even function
Odd function

I. The Graph of a Function (Pages 30–31)

Explain the use of open or closed dots in the graphs of functions.

To find the domain of a function from its graph, . . .

To find the range of a function from its graph, . . .

The Vertical Line Test for functions states . . .
Example 1: Decide whether each graph represents \(y \) as a function of \(x \).

(a)
(b)

II. Increasing and Decreasing Functions (Page 32)

A function \(f \) is increasing on an interval if, for any \(x_1 \) and \(x_2 \) in the interval, . . .

A function \(f \) is decreasing on an interval if, for any \(x_1 \) and \(x_2 \) in the interval, . . .

A function \(f \) is constant on an interval if, for any \(x_1 \) and \(x_2 \) in the interval, . . .

Given a graph of a function, to find an interval on which the function is increasing . . .

Given a graph of a function, to find an interval on which the function is decreasing . . .

Given a graph of a function, to find an interval on which the function is constant . . .

III. Relative Minimum and Maximum Values (Pages 33–34)

A function value \(f(a) \) is called a relative minimum of \(f \) if . . .
A function value \(f(a) \) is called a **relative maximum** of \(f \) if . . .

The point at which a function changes from increasing to decreasing is a relative __________. The point at which a function changes from decreasing to increasing is a relative __________.

To approximate the relative minimum or maximum of a function using a graphing utility, . . .

Example 2: Suppose a function \(C \) represents the annual number of cases (in millions) of chicken pox reported for the year \(x \) in the United States from 1960 through 2000. Interpret the meaning of the function’s minimum at (1998, 3).

IV. Graphing Step Functions and Piecewise-Defined Functions (Page 35)

Describe the graph of the greatest integer function.

Example 3: Let \(f(x) = \left\lfloor x \right\rfloor \), the greatest integer function. Find \(f(3.74) \).

To sketch the graph of a piecewise-defined function, . . .
V. Even and Odd Functions (Pages 36–37)

A graph is symmetric with respect to the y-axis if, whenever \((x, y)\) is on the graph, \((-x, y)\) is also on the graph. A graph is symmetric with respect to the x-axis if, whenever \((x, y)\) is on the graph, \((x, -y)\) is also on the graph. A graph is symmetric with respect to the origin if, whenever \((x, y)\) is on the graph, \((-x, -y)\) is also on the graph.

A function whose graph is symmetric with respect to the y-axis is a(n) \(\underline{\text{even}}\) function. A function whose graph is symmetric with respect to the origin is a(n) \(\underline{\text{even}}\) function. The graph of a (nonzero) function cannot be symmetric with respect to the \(\underline{\text{odd}}\) function.

Additional notes

Homework Assignment

Page(s)

Exercises