Precalculus with Limits: A Graphing Approach
 Ā   Ā  Ā Graphing Calculator Programs Ā Student Success Organizer Ā ACE Practice Tests Ā  Ā SMARTHINKING Ā    Textbook Site for:     Precalculus with Limits: A Graphing Approach, Third Edition    Student Success Organizer

This notebook organizer will help you develop a section-by-section summary of the key concepts in Precalculus with Limits: A Graphing Approach. It is a set of templates to help you take notes, review section highlights, draw graphs, and keep track of homework assignments. Just click on the section number to view the pages, then print them out.

 Download the free Acrobat Reader! Ā
 For further explanation on how to save or view PDF documents, please see:Downloading and viewing PDF files.

• Chapter PĀ Prerequisites
P.1 Graphical Representation of Data
P.2 Graphs of Equations
P.3 Lines in the Plane
P.4 Solving Equations Algebraically and Graphically
P.5 Solving Inequalities Algebraically and Graphically
• Chapter 1 Functions and Their Graphs
1.1 Functions
1.2 Graphs of Functions
1.3 Shifting, Reflecting, and Stretching Graphs
1.4 Combinations of Functions
1.5 Inverse Functions
• Chapter 2 Polynomial and Rational Functions
2.1 Quadratic Functions
2.2 Polynomial Functions of Higher Degree
2.3 Real Zeros of Polynomial Functions
2.4 Complex Numbers
2.5 The Fundamental Theorem of Algebra
2.6 Rational Functions and Asymptotes
2.7 Graphs of Rational Functions
• Chapter 3 Exponential and Logarithmic Functions
3.1 Exponential Functions and Their Graphs
3.2 Logarithmic Functions and Their Graphs
3.3 Properties of Logarithms
3.4 Solving Exponential and Logarithmic Equations
3.5 Exponential and Logarithmic Models
• Chapter 4 Trigonometric Functions
4.1 Radian and Degree Measurement
4.2 Trigonometric Functions: The Unit Circle
4.3 Right Triangle Trigonometry
4.4 Trigonometric Functions of Any Angle
4.5 Graphs of Sine and Cosine Functions
4.6 Graphs of Other Trigonometric Functions
4.7 Inverse Trigonometric Functions
4.8 Applications and Models
• Chapter 5 Analytic Trigonometry
5.1 Using Fundamental Identities
5.2 Verifying Trigonometric Identities
5.3 Solving Trigonometric Equations
5.4 Sum and Difference Formulas
5.5 Multiple-Angle and Product-Sum Formulas
• Chapter 6 Additional Topics in Trigonometry
6.1 Law of Sines
6.2 Law of Cosines
6.3 Vectors in the Plane
6.4 Vectors and Dot Products
6.5 Trigonometric Form of a Complex Number
• Chapter 7 Systems of Equations and Inequalities
7.1 Solving Systems of Equations
7.2 Systems of Linear Equations in Two Variables
7.3 Multivariable Linear Systems
7.4 Systems of Inequalities
7.5 Linear Programming
• Chapter 8 Matrices and Determinants
8.1 Matrices and Systems of Equations
8.2 Operations with Matrices
8.3 The Inverse of a Square Matrix
8.4 The Determinant of a Square Matrix
8.5 Applications of Matrices and Determinants
• Chapter 9 Sequences, Series, and Probability
9.1 Sequences and Series
9.2 Arithmetic Sequences and Partial Sums
9.3 Geometric Sequences and Series
9.4 Mathematical Induction
9.5 The Binomial Theorem
9.6 Counting Principles
9.7 Probability
• Chapter 10 Topics in Analytic Geometry
10.1 Introduction to Conics: Parabolas
10.2 Ellipses
10.3 Hyberbolas
10.4 Rotation and Systems of Quadratic Equations
10.5 Parametric Equations
10.6 Polar Coordinates
10.7 Graphs of Polar Equations
10.8 Polar Equations of Conics
• Chapter 11 Analytic Geometry in Three Dimensions
11.1 The Three-Dimensional Coordinate System
11.2 Vectors in Space
11.3 The Cross Product of Two Vectors
11.4 Lines and Planes in Space
• Chapter 12 Limits and an Introduction to Calculus
12.1 Introduction to Limits
12.2 Techniques for Evaluating Limits
12.3 The Tangent Line Problem
12.4 Limits at Infinity and Limits of Sequences
12.5 The Area Problem    Site Map I Partners I Press Releases I Company Home I Contact Us Copyright Houghton Mifflin Company. All Rights Reserved.Terms and Conditions of Use, Privacy Statement, and Trademark Information 