Section P.2 Exponents and Radicals

Objective: In this lesson you learned how to use properties of exponents and radicals to simplify and evaluate expressions.

Important Vocabulary
Define each term or concept.

- Exponential form
- Scientific notation
- Principal \(n \)th root
- Rational exponent

I. Exponents (Pages 12–13)

In general, if \(b \) is a real number and \(r \) is a positive integer, then

\[
b^r = b \cdot b \cdot b \cdots b, \quad \text{where } r \text{ is the } \underline{\text{number of factors}} \text{ and } b \text{ is the } \underline{\text{base}}.
\]

Complete the following properties of exponents.

- \((ab)^m = \underline{\text{product of powers}}\)
- \(a^{m+n} = \underline{\text{power of a power}}\)
- \(\frac{1}{a^n} = \underline{\text{reciprocal of a power}}\)
- \(|a^2| = \underline{\text{absolute value of a power}}\)
- \(a^m \cdot a^n = \underline{\text{product of powers}}\)
- \(a^{mn} = \underline{\text{power of a power}}\)
- \(a^0 = \underline{\text{any number to the power of 0}}\)
- \(\left(\frac{a}{b}\right)^m = \underline{\text{quotient of powers}}\)

II. Scientific Notation (Page 14)

When a number is written in scientific notation, a \underline{\text{exponent}} indicates that the number is between 0 and 1.

A \underline{\text{exponent}} indicates that the number is 10 or more.
Example 1: (a) Write 970,000 in scientific notation.
(b) Write 8.3×10^{-4} in decimal form.

III. Radicals and Their Properties (Pages 15–16)

Let a and b be real numbers. If $a = b^2$, then b is the
________________ of a. If $a = b^3$, then b is the
________________ of a.

In $\sqrt[n]{a}$, the positive integer n is the __________ of the radical,
and the number a is the ______________.

The radical expression $\sqrt[3]{-36}$ is not a real number because . . .

Example 2: Simplify each radical expression.
(a) $\sqrt{\frac{81}{16}}$ (b) $\frac{3\sqrt{3} \cdot \sqrt{9}}{16}$

IV. Simplifying Radicals (Pages 17–18)

An expression involving radicals is in simplest form when the
following conditions are satisfied:
1)
2)
3)

Radical expressions are like radicals if . . .

Example 3: Explain how to simplify a radical.
V. Rationalizing Denominators and Numerators
(Pages 18–19)

To change a radical expression so that it is free of radicals in the denominator is called ________.

The conjugate of the radical expression \(a + b\sqrt{m} \) is ________.

What type of rationalizing factor should be used if a denominator is of the form:
(a) \(\sqrt{m} \) ?
(b) \(\sqrt[3]{m} \) ?

Example 4: Explain how to rationalize the denominator of the expression \(\frac{4 + \sqrt{13}}{5 - \sqrt{8}} \).

VI. Rational Exponents (Pages 19–20)

The numerator of a rational exponent denotes the ________ to which the base is raised, and the denominator denotes the ________ or the ________ to be taken.

Example 5: Write the radical expression \(\sqrt[4]{w^9} \) in exponential form.

Example 6: Explain how to simplify the expression \(\frac{x^{3/4}}{x^{2/3}} \).
Homework Assignment

Page(s)
Exercises