ARITHMETIC
CLAST MATHEMATICS COMPETENCIES

IA1a: Add and subtract rational numbers
IA1b: Multiply and divide rational numbers
IA2a: Add and subtract rational numbers in decimal form
IA2b: Multiply and divide rational numbers in decimal form
IA3: Calculate percent increase and percent decrease
IA4: Solve the sentence $a\%$ of b is c, where values for two of the variables are given
IIA1: Recognize the meaning of exponents
IIA2: Recognize the role of the base number in determining place value in the base-ten numeration system
IIA3: Identify equivalent forms of positive rational numbers involving decimals, percents and fractions
IIA4: Determine the order relation between real numbers
IIA5: Identify a reasonable estimate of a sum, average, or product of numbers
IIIA1: Infer relations between numbers in general by examining particular number pairs
IVA1: Solve real world problems which do not require the use of variables and which do not involve percent
IVA2: Solve real-world problems which do not require the use of variables and do require the use of percent
IVA3: Solve problems that involve the structure and logic of arithmetic
1.1 OPERATIONS WITH RATIONAL NUMBERS

In this chapter we shall discuss the rational numbers (including fractions, decimals and percents), operations with these numbers and word problems involving them. We start by giving you the basic terminology. There is also a Glossary at the end of the book.

<table>
<thead>
<tr>
<th>Terminology—Types of Numbers</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural or counting numbers</td>
<td>8, 49 and 487 are natural numbers.</td>
</tr>
<tr>
<td>Whole numbers</td>
<td>7, 94 and 1349 are whole numbers.</td>
</tr>
<tr>
<td>Integers (the whole numbers and their additive inverses or opposites)</td>
<td>-90, 48, 0 and 1876 are integers. Note that 90 and -90 are additive inverses or opposites of each other.</td>
</tr>
<tr>
<td>Rational numbers are numbers that can be written in the form (\frac{a}{b}), where (a) and (b) are integers and (b) is not 0.</td>
<td>34, (-\frac{3}{4}), (-\frac{1}{5}), 0, 3.47, -8.5 and 1 (\frac{2}{7}) are rational numbers. Note: all integers are rational numbers.</td>
</tr>
<tr>
<td>Prime numbers are numbers which have exactly two different divisors: themselves and 1.</td>
<td>2, 3, 5, 7, 11, 13 and 17 are prime.</td>
</tr>
<tr>
<td>Composite numbers are natural numbers greater than 1 that are not prime.</td>
<td>20, 4, 48 and 60 are composite.</td>
</tr>
<tr>
<td>A fraction is a number (\frac{a}{b}) indicating the quotient of the numerator (a) divided by the denominator (b). When (a) is less than (b), the fraction is a proper fraction.</td>
<td>(\frac{3}{4}) is a proper fraction with a numerator of 3 and a denominator of 4. Note that (\frac{6}{5}) and (\frac{10}{10}) are not proper fractions.</td>
</tr>
<tr>
<td>A mixed number is an indicated sum of a whole number and a fraction.</td>
<td>(2 \frac{3}{5} = 2 + \frac{3}{5}) is a mixed number.</td>
</tr>
</tbody>
</table>
A. Adding and Subtracting Rational Numbers

Objective IA1a

CLAST SAMPLE PROBLEMS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $3\frac{4}{7} + 1\frac{2}{5}$</td>
<td>2. $-\frac{2}{3} + \frac{3}{5}$</td>
</tr>
<tr>
<td>3. $-9 + 2\frac{3}{4}$</td>
<td>4. $-\frac{1}{4} - \left(\frac{7}{8}\right)$</td>
</tr>
</tbody>
</table>

ANSWERS ARE GIVEN AT THE END OF THE PAGE

We are now ready to perform the four fundamental operations using rational numbers. To do this we need the rules that follow.

1. EQUIVALENT FRACTIONS

<table>
<thead>
<tr>
<th>RULE</th>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{a}{b} = \frac{a \times c}{b \times c}$</td>
<td>$\frac{5}{7} = \frac{5 \times 2}{7 \times 2} = \frac{10}{14}$ and $\frac{12}{20} = \frac{12 \div 4}{20 \div 4} = \frac{3}{5}$</td>
</tr>
</tbody>
</table>

EXAMPLES

- To reduce $\frac{10}{15}$, write $\frac{10}{15} = \frac{10 \div 5}{15 \div 5} = \frac{2}{3}$.
- You can also write $\frac{2}{3}$.

2. ADDITION OF SIGNED NUMBERS

<table>
<thead>
<tr>
<th>RULE</th>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. If the numbers have the same sign, add them and give the sum the common sign.</td>
<td>$3 + 8 = + (3 + 8) = 11$</td>
</tr>
<tr>
<td>2. If they have different signs, subtract the smaller from the larger and give the sum the sign of the larger number.</td>
<td>$-3 + (-8) = - (3 + 8) = -11$</td>
</tr>
<tr>
<td>$3 + (-9) = - (9 - 3) = 6$</td>
<td>Use the sign of 9, the larger.</td>
</tr>
</tbody>
</table>

3. SUBTRACTION OF SIGNED NUMBERS

<table>
<thead>
<tr>
<th>RULE</th>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a - b = a + (-b)$, that is, to subtract the number b from the number a, add the additive inverse of b, that is, add $(-b)$</td>
<td>$3 - 5 = 3 + (-5) = - (5 - 3) = -2$</td>
</tr>
<tr>
<td>Note: $a - (-b) = a + b$</td>
<td>$-5 - 4 = -5 + (-4) = - (5 + 4) = -9$</td>
</tr>
<tr>
<td>$-3 - (-7) = -3 + 7 = + (7 - 3) = 4$</td>
<td></td>
</tr>
</tbody>
</table>

ANSWERS

| | 1. $4\frac{34}{35}$ | 2. $-\frac{1}{15}$ | 3. $-6\frac{1}{4}$ | 4. $-4\frac{1}{8}$ |
Changing Mixed Numbers to Fractions and Vice Versa

Rule

To change a **mixed number** to an improper fraction, multiply the denominator by the whole number part and add the numerator to obtain the new numerator. Use the same denominator.

To change an improper fraction to a **mixed number**, divide the numerator by the denominator. The quotient is the whole number part, the remainder is the numerator in the fraction part. The denominator remains the same.

Examples

\[
\begin{align*}
3 \frac{4}{5} &= \frac{5 \times 3 + 4}{5} = \frac{19}{5} \\
2 \frac{7}{10} &= \frac{10 \times 2 + 7}{10} = \frac{27}{10}
\end{align*}
\]

\[
\frac{14}{3} = 4 \frac{2}{3}, \text{ because } 14 \text{ divided by } 3 \text{ is } 4, \text{ with a remainder of } 2.
\]

\[
\frac{26}{7} = 3 \frac{5}{7}, \text{ because } 26 \text{ divided by } 7 \text{ is } 3 \text{ with a remainder of } 5.
\]

Finding the Least Common Denominator (LCD)

Method 1

Check the multiples of the greater denominator until you get a multiple of the smaller denominator. This number is the LCD. Remember that the multiples of 30, for example, are:

\[
\begin{align*}
1 \times 30 &= 30, \\
2 \times 30 &= 60, \\
3 \times 30 &= 90, \\
4 \times 30 &= 120 \text{ and so on.}
\end{align*}
\]

The multiples of 24 are:

\[
\begin{align*}
1 \times 24 &= 24, \\
2 \times 24 &= 48, \\
3 \times 24 &= 72, \\
4 \times 24 &= 96 \text{ and so on.}
\end{align*}
\]

Examples

To find the LCD of \(\frac{1}{30}\) and \(\frac{7}{24}\), write the multiples of 30 until you get a multiple of 24. The multiples of 30 are:

\[
\begin{align*}
1 \times 30 &= 30 \text{ (not a multiple of } 24) \\
2 \times 30 &= 60 \text{ (not a multiple of } 24) \\
3 \times 30 &= 90 \text{ (not a multiple of } 24) \\
4 \times 30 &= 120 \text{ (a multiple of } 24, \text{ since } 5 \times 24 = 120).
\end{align*}
\]

Thus, the LCD of \(\frac{1}{30}\) and \(\frac{7}{24}\) is 120.

Method 2

Write each denominator as a product of primes using exponents. The LCD is the product of the **highest** powers of the primes in the factorization. (It helps if you write the powers of the prime factors in a column so they are easier to compare.)

Examples

Write 30 and 24 as products of primes.

\[
\begin{align*}
30 &= 2 \times 15 = 2 \times 3 \times 5 \\
24 &= 2 \times 12 = 2 \times 2 \times 6 = 2 \times 2 \times 2 \times 3
\end{align*}
\]

Writing \(2 \times 2 \times 2\) as \(2^3\) we have

\[
\begin{align*}
30 &= 2 \times 3 \times 5 \\
24 &= 2^3 \times 3
\end{align*}
\]

The LCD is \(2^3 \times 3 \times 5 = 120\) as before.
RULES FOR ADDING AND SUBTRACTING FRACTIONS

RULE
To add or subtract fractions with the **same** denominator, write
\[
\frac{a}{b} + \frac{c}{b} = \frac{a + c}{b} \quad \text{and} \quad \frac{a}{b} - \frac{c}{b} = \frac{a - c}{b}
\]

To add or subtract fractions with **different** denominators, write the given fractions as equivalent ones with the LCD as the common denominator and then add or subtract.

<table>
<thead>
<tr>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\frac{3}{5} + \frac{1}{5} = \frac{3+1}{5} = \frac{4}{5}] and [\frac{3}{5} - \frac{1}{5} = \frac{3-1}{5} = \frac{2}{5}]</td>
</tr>
</tbody>
</table>

To add \(\frac{3}{7} + \frac{5}{12}\), find the LCD of 7 and 12 which is 84, write the fractions with 84 as denominators and add. Thus,
\[
\frac{3}{7} = \frac{3 \times 12}{7 \times 12} = \frac{36}{84} \\
\frac{5}{12} = \frac{5 \times 7}{12 \times 7} = \frac{35}{84} \\
= \frac{71}{84}
\]

TO ADD OR SUBTRACT MIXED NUMBERS

RULE
To add or subtract mixed numbers, add or subtract the fractional part first, then add or subtract the whole number part. **Note:** If one of the numbers is a fraction, we can still use this procedure. Thus,
\[
1 \frac{1}{3} + \frac{2}{5} = 1 \frac{5}{15} + \frac{6}{15} = 1 \frac{11}{15}
\]

<table>
<thead>
<tr>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>To add (\frac{3}{4}) and (\frac{5}{8}), add (\frac{3}{4}) and (\frac{5}{8}) first. The LCD is 8, so we write [\frac{3}{4} = \frac{3 \times 8}{4 \times 8} = \frac{24}{32}] and [\frac{5}{8} = \frac{5 \times 4}{8 \times 4} = \frac{20}{32}] + [\frac{2}{5} = \frac{2 \times 8}{8 \times 8} = \frac{16}{32}]</td>
</tr>
</tbody>
</table>

\[
\frac{5 \times 11}{8} = 5 + \frac{11}{8} = 5 + 1 \frac{3}{8} = 6 \frac{3}{8}
\]

SUBTRACTING MIXED NUMBERS

RULE
Sometimes you may have to "borrow" from the whole number part. To find \(6 \frac{1}{4} - 3 \frac{4}{5}\) find the LCD, 20, and write
\[
6 \frac{1}{4} - 3 \frac{4}{5} = 6 \frac{5}{20} - 3 \frac{16}{20} \quad \text{but we cannot subtract}\frac{16}{20}\text{ from }\frac{5}{20}, \text{ so we "borrow" and write }\frac{5}{20} = 5 + \frac{20}{20} + \frac{5}{20} = \frac{25}{20}.
\]

<table>
<thead>
<tr>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>To subtract (3 \frac{4}{5}) from (6 \frac{1}{4}), we find the LCD, 20, as usual, then write: [6 \frac{1}{4} = \frac{6 \times 5}{4 \times 5} = \frac{30}{20}] and [-3 \frac{4}{5} = -3 \frac{20}{20} = -3 \frac{16}{20} = \frac{29}{20}]</td>
</tr>
</tbody>
</table>

\[
2 \frac{9}{20}
\]
CLAST EXAMPLES

Example
1. \[2\frac{1}{2} + \frac{1}{9} = \]
 A. \(\frac{2}{11}\) B. \(2\frac{11}{18}\) C. \(2\frac{5}{9}\) D. \(\frac{11}{18}\)

Note that \(2\frac{1}{2} + \frac{1}{9}\) must be more than 2, so the answer has to be B or C.

Solution
The LCD of 2 and 9 is 18.
\[
\begin{align*}
2\frac{1}{2} &= 2\frac{9}{18} \\
+\frac{1}{9} &= \frac{2}{18}
\end{align*}
\]

\[\frac{211}{18}\]
The answer is B.

Example
2. \[6 - 2\frac{1}{3} = \]
 A. \(4\frac{2}{3}\) B. \(4\frac{1}{3}\) C. \(3\frac{2}{3}\) D. \(3\frac{1}{3}\)

Note that 6 - 2 is 4, so 6 - 2\(\frac{1}{3}\) must be less than 4. It has to be C or D.

Solution
First write 6 as \(5 + 1 = 5 + \frac{3}{3} = 5\frac{3}{3}\)
\[
\begin{align*}
6 &= 5\frac{3}{3} \\
-2\frac{1}{3} &= 3\frac{2}{3} (5 - 2 = 3 \text{ and } \frac{3}{3} - \frac{1}{3} = \frac{2}{3})
\end{align*}
\]
The answer is C.

Example
3. \[-2 + 1\frac{1}{4} = \]
 A. \(3\frac{1}{4}\) B. \(3\frac{3}{4}\) C. \(-\frac{3}{4}\) D. \(-1\frac{1}{4}\)

Note that \(-2 + 1\frac{1}{4}\) has to be negative: eliminate answers A and B. Now,
\[-2 + 1\frac{1}{4} = -(2 - 1\frac{1}{4}) = -\frac{3}{4}.\] If you want to do the operations vertically, see the solution.

Solution
First write \(-2\) as \(-1 + \frac{-4}{4} = -1\frac{-4}{4}\)
\[
\begin{align*}
-2 &= -1\frac{4}{4} + \frac{1}{4} \\
-3\frac{3}{4} (\frac{-4}{4} + \frac{1}{4} = \frac{-3}{4} = -\frac{3}{4})
\end{align*}
\]
The answer is C.
Example

4. \(-\frac{2}{3} - (-1) = \)

\begin{align*}
\text{A. } & -\frac{5}{3} \\
\text{B. } & -1 \\
\text{C. } & \frac{1}{3} \\
\text{D. } & -\frac{1}{3}
\end{align*}

Solution

By the definition of subtraction,
\[-\frac{2}{3} - (-1) = -\frac{2}{3} + 1 = -\frac{2}{3} + \frac{3}{3} = \frac{1}{3}.
\]
The answer is C.

B. Multiplying and Dividing Rational Numbers

<table>
<thead>
<tr>
<th>Objective IA1b</th>
<th>CLAST SAMPLE PROBLEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (8\frac{2}{3} \times \frac{3}{4})</td>
<td>2. (\frac{3}{5} \times \frac{5}{6})</td>
</tr>
</tbody>
</table>

10 | MULTIPLICATION AND DIVISION OF SIGNED NUMBERS |

RULE

When multiplying or dividing two numbers with the same (like) signs, the result is positive.

When multiplying or dividing two numbers with different (unlike) signs, the result is negative.

EXAMPLES

\[
\begin{align*}
3 \times 4 &= 12, \\
-5 \times (-8) &= 40 \\
-3 \times 4 &= -12 \\
(-7) \times 4 &= -28
\end{align*}
\]

\[
\begin{align*}
6 \times 9 &= 54 \\
-6 \times (-4) &= 24 \\
8 \times (-9) &= -72 \\
(-3) \times 2 &= -6
\end{align*}
\]

Note: We write -5 \times (-8) instead of -5 \times -8 to avoid having the two symbols \times and - together.

11 | MULTIPLICATION OF FRACTIONS |

RULE

\[
\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}
\]

To multiply \(\frac{a}{b}\) by \(\frac{c}{d}\) multiply the numerators \(a\) and \(c\) and the denominators \(b\) and \(d\) (Write mixed numbers as improper fractions and reduce the answer.)

EXAMPLES

\[
\begin{align*}
\frac{3}{5} \times \frac{7}{8} &= \frac{3 \times 7}{5 \times 8} = \frac{21}{40} \\
1\frac{3}{4} \times \frac{8}{3} &= \frac{7}{4} \times \frac{8}{3} = \frac{56}{12} = \frac{14}{3} = 4\frac{2}{3}
\end{align*}
\]

Note that the answer is written as a mixed number.

ANSWERS

1. \(6\frac{1}{2}\)
2. \(-\frac{1}{2}\)
3. \(\frac{11}{24}\)
4. \(\frac{16}{25}\)
SECTION 1.1 Operations with Rational Numbers

DIVISION OF FRACTIONS

RULE

\[\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} \]

To divide \(\frac{a}{b} \) by \(\frac{c}{d} \) multiply \(\frac{a}{b} \) by \(\frac{d}{c} \) (the reciprocal of \(\frac{c}{d} \)).

Note: The reciprocal of a number \(n \) is \(\frac{1}{n} \) since \(n = \frac{n}{1} \). Thus, the reciprocal of 5 is \(\frac{1}{5} \).

EXAMPLES

<table>
<thead>
<tr>
<th>Rule</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{3}{8} \div \frac{5}{8})</td>
<td>(\frac{3}{8} \times \frac{5}{8} = \frac{15}{64})</td>
</tr>
<tr>
<td>(\frac{3}{4} \div \frac{7}{8})</td>
<td>(\frac{3}{4} \times \frac{8}{7} = \frac{24}{28} = \frac{3}{7})</td>
</tr>
</tbody>
</table>

Since the original problem had mixed numbers, the answer should be \(1 \frac{11}{15} \).

Note that this time we simplified before doing the multiplication.

CLAST EXAMPLES

Example

<table>
<thead>
<tr>
<th>Example</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{3} \times \frac{1}{5})</td>
<td>(\frac{2}{5})</td>
</tr>
<tr>
<td>A. (\frac{2}{15})</td>
<td>B. (\frac{1}{4})</td>
</tr>
<tr>
<td>C. (\frac{2}{5})</td>
<td>D. (1 \frac{1}{15})</td>
</tr>
</tbody>
</table>

The answer is C.

Example

<table>
<thead>
<tr>
<th>Example</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7 \div 2 \frac{1}{3})</td>
<td>(7 \div 2 \frac{1}{3} = 7 \div \frac{7}{3} = \frac{7}{1} \times \frac{3}{\frac{7}{3}} = 3)</td>
</tr>
<tr>
<td>A. (\frac{3}{49})</td>
<td>B. (\frac{1}{3})</td>
</tr>
<tr>
<td>C. (3)</td>
<td>D. (16 \frac{2}{3})</td>
</tr>
</tbody>
</table>

The answer is C.
Example

7. \(\left(-\frac{1}{5} \right) \div \left(-\frac{2}{3} \right) = \)

<table>
<thead>
<tr>
<th>A. (\frac{10}{3})</th>
<th>B. (\frac{3}{10})</th>
<th>C. (-\frac{3}{10})</th>
<th>D. (-\frac{10}{3})</th>
</tr>
</thead>
</table>

Solution

\(\left(-\frac{1}{5} \right) \div \left(-\frac{2}{3} \right) = \frac{1}{5} \times \frac{3}{2} = \frac{3}{10} \)

Note that the fractions have the same (like) signs, so the answer is positive. The answer is B.

Example

8. \((-6) \times 2\frac{1}{3} = \)

<table>
<thead>
<tr>
<th>A. -21</th>
<th>B. -14</th>
<th>C. -12\frac{1}{3}</th>
<th>D. 12\frac{1}{3}</th>
</tr>
</thead>
</table>

Solution

\((-6) \times 2\frac{1}{3} = -\frac{6}{1} \times \frac{7}{3} = -14\frac{1}{1}\)

The numbers have different (unlike) signs, so their product is negative. The answer is B.

Section 1.1 Exercises

WARM-UPS A

1. \(\frac{1}{3} + \frac{1}{7} \)

2. \(\frac{3}{8} + 2\frac{1}{5} \)

3. \(5 - 3\frac{1}{4} \)

4. \(-2\frac{1}{8} + 6 \)

5. \(-3 + 1\frac{1}{5} \)

6. \(-4 + 1\frac{1}{6} \)

7. \(-\frac{3}{4} - (-2) \)

8. \(-\frac{2}{5} - (-3) \)
SECTION 1.1 Operations with Rational Numbers

9. \(-5 - \left(\frac{3}{5}\right)\)
10. \(-3 - \left(\frac{4}{7}\right)\)

CLAST PRACTICE A

11. \[1 \frac{1}{2} + \frac{1}{7} = \]
 A. \(\frac{2}{9}\)
 B. \(\frac{9}{14}\)
 C. \(1 \frac{5}{9}\)
 D. \(1 \frac{9}{14}\)

12. \([9 - 4 \frac{1}{3}] = \]
 A. \(4 \frac{2}{3}\)
 B. \(5 \frac{1}{3}\)
 C. \(5 \frac{2}{3}\)
 D. \(4 \frac{1}{3}\)

13. \([-3 + 2 \frac{1}{4}] = \]
 A. \(-1 \frac{1}{4}\)
 B. \(-\frac{3}{4}\)
 C. \(\frac{3}{4}\)
 D. \(3 \frac{1}{4}\)

14. \[-\frac{2}{7} - (-1) = \]
 A. \(-\frac{5}{7}\)
 B. \(-1\)
 C. \(-\frac{1}{7}\)
 D. \(\frac{5}{7}\)

PRACTICE PROBLEMS: Chapter 1, #1-4

15. \(\frac{4}{7} \times 2 \frac{1}{4}\)
16. \(\frac{2}{15} \times 2 \frac{1}{2}\)

17. \(6 ÷ 1 \frac{1}{3}\)
18. \(9 ÷ 1 \frac{1}{2}\)

19. \(\left(-\frac{14}{15}\right) ÷ \left(-\frac{1}{5}\right)\)
20. \(\left(-\frac{1}{27}\right) ÷ \left(-\frac{1}{3}\right)\)

21. \(\left(-\frac{1}{24}\right) ÷ \left(-\frac{1}{2}\right)\)
22. \(\left(-\frac{14}{15}\right) ÷ \left(-\frac{2}{5}\right)\)

23. \(-28 \times 2 \frac{3}{7}\)
24. \(-16 \times 3 \frac{3}{4}\)

Copyright © Houghton Mifflin Company. All rights reserved.
25. \[\frac{3}{4} \times 4\frac{1}{2} = \]
 A. 4 \(\frac{1}{2}\) B. \(\frac{1}{2}\) C. 4 \(\frac{1}{8}\) D. 3 \(\frac{3}{8}\)

26. \[8 \div 1\frac{2}{3} = \]
 A. 4 \(\frac{4}{5}\) B. 13 \(\frac{1}{3}\) C. \(\frac{3}{40}\) D. \(\frac{2}{3}\)

27. \[\left(-\frac{7}{32} \right) \div \left(-\frac{3}{8} \right) = \]
 A. -\(\frac{7}{12}\) B. \(\frac{7}{12}\) C. -1 \(\frac{5}{7}\) D. 1 \(\frac{5}{7}\)

28. \(-8 \times 2\frac{1}{2} \)
 A. -16 \(\frac{1}{2}\) B. 16 \(\frac{1}{2}\) C. -25 D. -20

EXTRA CLAST PRACTICE

29. \[-1\frac{1}{3} + \left(-\frac{34}{7} \right) = \]
 A. 2 \(\frac{19}{21}\) B. -2 \(\frac{5}{21}\) C. -4 \(\frac{11}{21}\) D. -4 \(\frac{19}{21}\)

30. \[2\frac{1}{5} - \left(-\frac{4}{9} \right) \]
 A. -\(\frac{56}{45}\) B. \(\frac{29}{45}\) C. \(\frac{29}{45}\) D. 5 \(\frac{5}{14}\)

31. \[\left(-\frac{2}{7} \right) \times \frac{5}{6} \]
 A. -4 \(\frac{5}{21}\) B. -\(\frac{2}{7}\) C. -3 \(\frac{4}{7}\) D. 3 \(\frac{4}{7}\)
In Section 1.1 we expressed the number 120 as a product of primes using exponents, as $120 = 2^3 \times 3 \times 5$. In the expression 2^3, 2 is called the **base** and 3 is the **exponent**. The exponents 3 tells us how many times the base 2 must be used as a factor. The raised dot • and parentheses () also indicate multiplication. Thus, we can also write:

$$120 = 2^3 \times 3 \times 5 \quad \text{or} \quad 120 = (2^3)(3)(5)$$

$$4 \times 4 \times 4 = 4^3$$

4^3 is read as "four to the third power" or "four cubed"

$$(7) (7) (7) (7) = 7^4$$

7^4 is read as "seven to the fourth power" or "seven to the fourth"

<table>
<thead>
<tr>
<th>T</th>
<th>TERMINOLOGY--EXPONENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFINITION OF EXPONENTS</td>
<td>EXAMPLES</td>
</tr>
<tr>
<td>$a^n = a \times a \times a \ldots \times a$</td>
<td></td>
</tr>
<tr>
<td>a is used as a factor n times</td>
<td></td>
</tr>
<tr>
<td>(n is a natural number)</td>
<td>$3^2 = 3 \times 3$, $5^4 = (5)(5)(5)(5)$</td>
</tr>
<tr>
<td>Note: a^n is also written as</td>
<td>$8^4 = (8)(8)(8)(8)$</td>
</tr>
<tr>
<td>$a^n = (a)(a)(a) \ldots (a)$</td>
<td>$7^5 = 7 \times 7 \times 7 \times 7 \times 7$</td>
</tr>
<tr>
<td>or as $a^n = a \cdot a \cdot a \ldots \cdot a$</td>
<td>$9^0 = 1$, $50^0 = 1$ and $(100)^0 = 1$</td>
</tr>
<tr>
<td>We define $a^0 = 1$ and $a^1 = a$</td>
<td>$10^1 = 10$, $50^1 = 50$ and $100^1 = 100$</td>
</tr>
</tbody>
</table>

This section of the CLAST emphasizes the **meaning** and **notation** associated with exponents rather than the **rules** or **laws** of exponents. The examples that follow will illustrate this.

A. Recognizing the Meaning of Exponents

<table>
<thead>
<tr>
<th>Objective IIA1</th>
<th>CLAST SAMPLE PROBLEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $5^3 - 2^4 =$</td>
<td>2. $7^3 \div 3^2 =$</td>
</tr>
<tr>
<td>3. $(6^3)^2 =$</td>
<td>4. $5(2^3)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANSWERS</th>
<th>1. $(5 \times 5 \times 5) - (2 \times 2 \times 2 \times 2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. $(6 \times 6 \times 6) \div (3 \times 3)$</td>
<td></td>
</tr>
<tr>
<td>3. $6^3 \times 6^3 = (6 \times 6 \times 6) \times (6 \times 6 \times 6)$</td>
<td></td>
</tr>
<tr>
<td>4. $5 \times (2 \times 2 \times 2)$</td>
<td></td>
</tr>
</tbody>
</table>
CLAST EXAMPLES

Example 1. \((7^3)(6^4) =\)

A. \((7 \times 6)^{12}\)
B. \((7 \times 3)(6 \times 4)\)
C. \((7 \times 7 \times 7)(6 \times 6 \times 6 \times 6)\)
D. \((7 + 7 + 7)(6 + 6 + 6 + 6)\)

Solution

By definition \(7^3 = 7 \times 7 \times 7\) and \(6^4 = 6 \times 6 \times 6 \times 6\). Thus,
\[
(7^3)(6^4) = (7 \times 7 \times 7)(6 \times 6 \times 6 \times 6)
\]
The correct answer is C.

Note that you do not have to simplify the answer, you just write \(7^3\) and \(6^4\) as indicated products.

Example 2. \(6^2 + 5^2 =\)

A. \((6 + 5)^4\)
B. \((6)(6) + (5)(5)\)
C. \((6 + 5)^2\)
D. \((6)(2) + (5)(2)\)

Solution

Again, we simply use the definition of exponents to write \(6^2 = (6)(6)\) and \(5^2 = (5)(5)\). Thus, \(6^2 + 5^2 = (6)(6) + (5)(5)\).
The correct answer is B.
There is no rule of exponents that covers the addition of two numbers.

Example 3. \((9^5)^2 =\)

A. \(9^7\)
B. \((9 \times 5)^2\)
C. \(9^{25}\)
D. \(9^5 \times 9^5\)

Solution

Note that by definition, \(a^2 = a \times a\).
If you think of \(9^5\) as \(a\), \(a^2 = a \times a\) becomes \((9^5)^2 = 9^5 \times 9^5\) and the correct answer is D.

B. Place Value and Base

Objective IIA2

CLAST SAMPLE PROBLEMS

1. Find the place value of the underlined digit \(3286.0038\)
2. Write \(23,285.401\) in exponential form
3. Find the numeral for \((3 \times 10^2) + (1 \times 10^0) + \left(5 \times \frac{1}{10^3}\right)\)

ANSWERS

1. 2 is in the hundreds place: \((2 \times 10^2)\)
2. \((2 \times 10^4) + (3 \times 10^3) + (2 \times 10^2) + (8 \times 10^1) + (5 \times 10^0) + \left(4 \times \frac{1}{10^1}\right) + \left(1 \times \frac{1}{10^2}\right)\)
3. \(301.005\)
Each of the places (boxes) to the right and left of the decimal point in the diagram has a place value. These place values increase as you move left from the units place, and decrease as you move right from the units place. For example,

The 7 is in the thousands \((10^3)\) place. (3 places to the left of the units.)
The 3 is in the hundreds \((10^2)\) place. (2 places to the left of the units.)
The 4 is in the tens \((10^1)\) place. (1 place to the left of the units.)
The 8 is in the units \((10^0)\) place. (The 8 is 0 places from the units.)
The 7 is in the tenths \((\frac{1}{10})\) place. (1 place to the right of the units.)
The 2 is in the hundredths \((\frac{1}{100})\) place. (2 places to the right of the units.)

Do you see the pattern? You must start at the units place!

3 places to the left of the units is the thousands or \(10^3\) place.
2 places to the right of the units is the hundredths or \(\frac{1}{10^2} = \frac{1}{100}\) place.

If you do see the pattern, you will be able to find the place value associated with the boxed digits in the number \(4\underline{9} \; 31.68\underline{5}\).

The nine is two places to the left of the units, it is in the hundreds or \(10^2\) place, while the 5 is three places to the right of the units, it is in the thousandths or \(\frac{1}{10^3}\) place. You can verify this by looking at the diagram.

CLAST EXAMPLES

<table>
<thead>
<tr>
<th>Example</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Select the place value associated with the underlined digit (5.0392)</td>
<td>The place value occupied by 9 is three places to the right of the units place. It is the (\frac{1}{10^3}) (thousandths) place. The correct answer is B.</td>
</tr>
</tbody>
</table>

A. \(\frac{1}{10^9}\) B. \(\frac{1}{10^3}\) C. \(10^9\) D. \(10^3\)
Example 5. Select the place value associated with the underlined digit 83,584.02

A. \(\frac{1}{10^3} \) B. \(\frac{1}{10^2} \) C. \(10^3 \) D. \(10^2 \)

Solution

The place value occupied by 5 is two places to the left of the units place. It is the \(10^2 \) (hundreds) place.

The correct answer is D.

How do you read (or write) the number 7348.72?

Seven thousand, three hundred forty-eight and seventy-two hundredths.

Note: The decimal point is read as and.

We can also write 7348.72 in expanded notation like this:

\[(7 \times 10^3) + (3 \times 10^2) + (4 \times 10^1) + (8 \times 10^0) + (7 \times \frac{1}{10}) + (2 \times \frac{1}{100})\]

CLAST EXAMPLES

Example 6. Select the expanded notation for 300.05

A. \((3 \times 10^2) + (5 \times \frac{1}{10^2}) \)

B. \((3 \times 10^3) + (5 \times \frac{1}{10}) \)

C. \((3 \times 10^3) + (5 \times \frac{1}{10^2}) \)

D. \((3 \times 10^2) + (5 \times \frac{1}{10}) \)

Solution

The number is three hundred and five hundredths, that is, \((3 \times 10^2) + (5 \times \frac{1}{10^2}) \). The correct answer is A.

You can also write the value of each place to the right and left of the decimal point above the number 300.05 to find the answer.

\[
\begin{array}{ccccccc}
10^2 & 10^1 & 10^0 & \frac{1}{10} & \frac{1}{10^2} \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
3 & 0 & 0 & 0 & 5 \\
\end{array}
\]

\[(3 \times 10^2) + (5 \times \frac{1}{10^2})\]

Example 7. Select the numeral for \((1 \times \frac{1}{10}) + (1 \times \frac{1}{10^5}) \)

A. 0.01010 B. 0.01001 C. 0.10001 D. 0.10010

Solution

Since the \(\frac{1}{10} \) place value is one place to the right of the units and \(\frac{1}{10^5} \) is five places to the right of the units, the answer must be 0.10001

Units place

The answer is C.
Example

8. Select the expanded notation for 20,345

A. \((2 \times 10^3) + (3 \times 10^2) + (4 \times 10^1) + (5 \times 10^0)\)
B. \((2 \times 10^5) + (3 \times 10^3) + (4 \times 10^2) + (5 \times 10^1)\)
C. \((2 \times 10^4) + (3 \times 10^2) + (4 \times 10^1) + (5 \times 10^0)\)
D. \((2 \times 10^4) + (3 \times 10^3) + (4 \times 10^2) + (5 \times 10^1)\)

Solution

The 2, 3, 4 and 5 are four (4), two (2), one (1) and zero (0) places from the units place, respectively. Thus, the answer must be:
\((2 \times 10^4) + (3 \times 10^2) + (4 \times 10^1) + (5 \times 10^0)\)

The answer is C.

Section 1.2 Exercises

WARM-UPS A

1. \((3^5)(2^2) =\)
2. \((4^3)(8^4) =\)
3. \(2^3 + 9^3 =\)
4. \(9^3 + 3^3 =\)
5. \((6^3)^2 =\)
6. \((7^4)^2 =\)

CLAST PRACTICE A

PRACTICE PROBLEMS: Chapter 1, #9-12

7. \((5^3)(3^2) =\)

A. \((5 \times 3)^6\)
B. \((5 \times 5 \times 5)(3 \times 3)\)
C. \((5 \times 3)(3 \times 2)\)
D. \((5 + 5 + 5)(3 + 3)\)

8. \(3^2 + 5^2 =\)

A. \((3 + 5)^2\)
B. \((3)(2) + (5)(2)\)
C. \((3 + 5)^4\)
D. \((3)(3) + (5)(5)\)

9. \((2^3)^2 =\)

A. \(2^5\)
B. \(2^9\)
C. \((2 \times 3)^2\)
D. \(2^3 \times 2^3\)
WARM-UPS B

10. What place value is associated with the underlined digit: 73.8425?

11. What place value is associated with the underlined digit: 5.3942?

12. Write the expanded notation for 84.674

13. Write the expanded notation for 294.97

14. Write the numeral for \((1 \times \frac{1}{10}) + (1 \times \frac{1}{10^2}) + (1 \times \frac{1}{10^5})\)

15. Write the numeral for \((2 \times \frac{1}{10}) + (1 \times \frac{1}{10^3}) + (1 \times \frac{1}{10^5})\)

16. Write the expanded notation for 30,478

17. Write the expanded notation for 12,057

CLAST PRACTICE B PRACTICE PROBLEMS: Chapter 1, #12

18. Select the place value associated with the underlined digit: 3.4985
 A. \(\frac{1}{10^3}\) B. \(\frac{1}{10^4}\) C. \(\frac{1}{10^0}\) D. \(\frac{1}{10^5}\)

19. Select the place value associated with the underlined digit: 63.493.07
 A. \(\frac{1}{10^3}\) B. \(\frac{1}{10^2}\) C. 10^2 D. 10^3

20. Select the expanded notation for 500.03.
 A. \((5 \times 10^2) + (3 \times \frac{1}{10^2})\) B. \((5 \times 10^3) + (3 \times \frac{1}{10})\)
 C. \((5 \times 10^3) + (3 \times \frac{1}{10^2})\) D. \((5 \times 10^2) + (3 \times \frac{1}{10})\)

21. Select the numeral for \((1 \times \frac{1}{10}) + (1 \times \frac{1}{10^7})\)
 A. 0.0100001 B. 0.100001 C. 0.1000001 D. 1.0000001

22. Select the expanded notation for 40,328.
 A. \((4 \times 10^3) + (3 \times 10^2) + (2 \times 10^1) + (8 \times 10^0)\)
 B. \((4 \times 10^5) + (3 \times 10^3) + (2 \times 10^2) + (8 \times 10^1)\)
 C. \((4 \times 10^4) + (3 \times 10^2) + (2 \times 10^1) + (8 \times 10^0)\)
 D. \((4 \times 10^4) + (3 \times 10^3) + (2 \times 10^2) + (8 \times 10^1)\)
EXTRA CLAST PRACTICE

23. \(8^4 - 2^4 =\)
 A. \((8 - 2)^4\)
 B. \((8 \times 8 \times 8 \times 8) - (2 \times 2 \times 2 \times 2)\)
 C. \(8 \times 4 - 2 \times 4\)
 D. \((8 - 2)^0\)

24. \((6 \times 5)^3 =\)
 A. \(18 \times 15\)
 B. \((6 \times 5) \times (6 \times 5) \times (6 \times 5)\)
 C. \((6 \times 5) + (6 \times 5)\)
 D. \(6 \times 6 \times 6 \times 5\)

25. Select the expanded notation for 3002.07
 A. \((3 \times 10^3) + (2 \times 10^1) + \left(\frac{7}{10^2}\right)\)
 B. \((3 \times 10^3) + (2 \times 10^0) + \left(\frac{7}{10}\right)\)
 C. \((3 \times 10^3) + (2 \times 10^0) + \left(7 \times \frac{1}{10^2}\right)\)
 D. \((3 \times 10^4) + (2 \times 10^0) + \left(7 \times \frac{1}{10^2}\right)\)

26. Select the numeral for \((5 \times 10^3) + \left(8 \times \frac{1}{10}\right)\)
 A. 500.8
 B. 508
 C. 5000.08
 D. 5000.8

27. Select the place value associated with the underlined digit: 32.8329
 A. \(\frac{1}{10^3}\)
 B. \(\frac{1}{10^2}\)
 C. \(10^2\)
 D. \(10^3\)
1.3 ESTIMATION AND OPERATIONS WITH DECIMALS

In this section we shall study the four fundamental operations using decimals. Before doing so, however, we shall discuss an idea that can be used as a helpful guide in selecting the correct answer, the idea of estimation. To estimate sums, averages or products, we need to be familiar with rounding.

<table>
<thead>
<tr>
<th>T</th>
<th>TERMINOLOGY—ROUNDING NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROUNDDING NUMBERS</td>
<td>EXAMPLES</td>
</tr>
<tr>
<td>When we wish to round a number we specify the place value to which we are to round by underlining it.</td>
<td>To round 258.34 to the nearest:</td>
</tr>
<tr>
<td></td>
<td>hundred, underline the 2 258.34</td>
</tr>
<tr>
<td></td>
<td>unit, underline the 8 258.34</td>
</tr>
<tr>
<td></td>
<td>hundredth, underline the 4 258.34</td>
</tr>
</tbody>
</table>

To do the actual rounding, we use the following rule:

<table>
<thead>
<tr>
<th>1</th>
<th>RULE FOR ROUNDING NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RULE</td>
<td>EXAMPLES</td>
</tr>
<tr>
<td>1. Underline the place to which you are rounding.</td>
<td>Round 258.34 to the nearest hundred</td>
</tr>
<tr>
<td>2. If the first number to the right of the underlined place is 5 or more, add one to the underlined number. Otherwise, do not change the underlined number.</td>
<td>1. Underline the 2. 258.34</td>
</tr>
<tr>
<td>3. Change all the numbers to the right of the underlined number to zeros.</td>
<td>2. The first number to the right of 2 is 5, so we add one to the underlined digit 2 to get 3.</td>
</tr>
<tr>
<td></td>
<td>3. Change all the digits to the right of 3 to zeros obtaining 300.00 or 300. Note that if you count by hundreds (100, 200, and so on) 258.34 is closer to 300 than to 200. The procedure is written as:</td>
</tr>
<tr>
<td></td>
<td>258 300</td>
</tr>
</tbody>
</table>

A. Estimating Sums, Averages or Products

Objective IIA5

CLAST SAMPLE PROBLEMS

1. A company employs 20 people. The lowest paid worker earns $300 per week. The highest paid worker earns $550 per week. What is a reasonable estimate of the total weekly payroll for the company?

2. An investor buys 108 shares of stock. Each stock costs $48.50. What is a reasonable estimate for the purchase?

3. A bank account contains $290.53. If $82.90 and $200.07 are deposited into the account and withdrawals of $178.50 and $46.80 are made. What is a reasonable estimate of the amount in the account after the deposits and withdrawals?

ANSWERS

1. Between $6000 and $11,000
2. $5000
3. $350
The rules for rounding numbers can be used to estimate sums, averages or products. In this section, we do not compute averages, but rather estimate what these averages would be. Thus, if the scores on your last three tests are 90, 50 and 73 your average for the three tests would be \(\frac{90 + 50 + 73}{3} \).

We are not asking for this answer now! Just be aware that the average of 90, 50 and 73 would be between the highest (90) and lowest (50) scores involved, that is, the average must be between 50 and 90. It is actually 71!

CLAST EXAMPLES

Example 1.
If a unit of water costs $1.82 and 40.435 units were used, which is a reasonable estimate of the bill? (Water is sold in thousand gallon units).

A. $80,000
B. $800
C. $8000
D. $80

Solution
First, note that the fact that water is sold by thousand gallon units is true, but not important to the problem. Next, we round 40.342 and $1.82 to the nearest whole number obtaining, 40 \(\rightarrow \) 40 and 1.82 \(\rightarrow \) 2. Multiplying 40 by 2, we get the estimate 80.

The answer is **D**.

Example 2.
A student bought cologne for $7.99, nail enamel for $2.29, candy for $3.89, adhesive paper for $1.89, a curling iron for $8.69, and sunglasses for $7.19. Which of the following is a reasonable estimate of the total amount spent?

A. $ 28.00
B. $25.00
C. $32.00
D. $36.00

Solution
Round all amounts to the nearest dollar.

\[
7.99 \rightarrow 8
2.29 \rightarrow 2
3.89 \rightarrow 4
\]

$1.89 \rightarrow 2
$8.69 \rightarrow 9
$7.19 \rightarrow 7

Since \(8 + 2 + 4 + 9 + 7 = 32 \), the answer is **C**.

Example 3.
A bag of rye grass seed covers 2.75 acres. Based on this fact, what is a reasonable estimate of the number of acres that could be covered with \(153 \frac{1}{2} \) bags of seed?

A. 50 acres
B. 300 acres
C. 450 acres
D. 400 acres

Solution
If \(153 \frac{1}{2} \) is rounded to the nearest ten, we have \(153 \frac{1}{2} \rightarrow 150 \). Since a bag of seed covers 3 acres (2.75 \(\rightarrow \) 3 when rounded to the nearest acre), 150 bags would cover \(150 \times 3 = 450 \) acres. The answer is **C**.

Note that if you rounded \(153 \frac{1}{2} \) to the nearest hundred, and 2.75 to the nearest acre, the answer would be \(200 \times 3 = 600 \) acres. (Not one of the choices!)
Example

4. Five hundred students took an algebra test. All of the students scored less than 92 but more than 63. Which of the following values could be a reasonable estimate of the average score for the students?

A. 96 B. 63 C. 71 D. 60

Solution

Remember, you do not have to compute the average. Since the scores ranged from 63 to 92, the answer must be between these two numbers. The only value between 63 and 92 in the answer is 71. Thus, the answer is C.

Example

5. The mathematics department employs 20 tutors. The lowest paid tutor makes $150 per month and the best paid earns $200 per month. Which of the following could be an estimate of the total monthly payroll for the tutors in the math department?

A. $3600 B. $3000 C. $4000 D. $6000

Solution

If each tutor was paid the lowest rate, the payroll would be $150 × 20 or $3000. If each tutor was paid the highest rate, the payroll would be $200 × 20 or $4000. But the earnings are between $150 and $200, so the total payroll must be between $3000 and $4000. The only answer between $3000 and $4000 is A.

Example

6. The table shows the actual price of the top 10 stocks by number of shares traded. Which could be a reasonable estimate of the average price per share for these stocks?

A. $5 B. $140 C. $143 D. $13

<table>
<thead>
<tr>
<th>Stock</th>
<th>Price</th>
<th>Shares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amdahl</td>
<td>$3\frac{3}{8}$</td>
<td>10</td>
</tr>
<tr>
<td>ExploLA</td>
<td>$1\frac{1}{4}$</td>
<td>12</td>
</tr>
<tr>
<td>Wang</td>
<td>$2\frac{7}{8}$</td>
<td>12</td>
</tr>
<tr>
<td>Nabors</td>
<td>$3\frac{3}{4}$</td>
<td>12</td>
</tr>
<tr>
<td>CaliffEgy</td>
<td>46</td>
<td>12</td>
</tr>
<tr>
<td>ElenCp</td>
<td>$2\frac{3}{4}$</td>
<td>12</td>
</tr>
</tbody>
</table>

Solution

The lowest priced stock is $1\frac{1}{4}$ and the highest priced is 46. The average price must be between these two numbers. There are two possible answers between $1\frac{1}{4}$ and 46. They are 5 and 13. Which do we choose? Resist the temptation of getting the actual average, it takes too much valuable time! Just note that 46 and $3\frac{5}{8}$ will drive the average up much more than $1\frac{1}{4}$ and $2\frac{3}{4}$ can drive the average down. The average is probably not as low as 5. The correct answer is D.

NOTE: Mixed numbers are used for illustrative purposes only. Stocks are now priced in decimals.
B. Operations with Decimals

<table>
<thead>
<tr>
<th>Objectives IA2a, Ia2b</th>
<th>CLAST SAMPLE PROBLEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 7.4 + 0.03</td>
<td>2. - 3.46 - 7.7</td>
</tr>
<tr>
<td>6. 7 × 0.025</td>
<td>7. 1.2 ÷ 0.6</td>
</tr>
<tr>
<td>2. - 3.46 - 7.7</td>
<td>3. 4.58 - 7</td>
</tr>
<tr>
<td>8. 0.12 ÷ 6</td>
<td>4. 0.006 × 0.8</td>
</tr>
<tr>
<td>3. 4.58 - 7</td>
<td>5. - 1.6 × 0.26</td>
</tr>
<tr>
<td>9. 12 ÷ 0.06</td>
<td></td>
</tr>
</tbody>
</table>

We are now ready to perform the four fundamental operations of addition, subtraction, multiplication and division using decimals. Before doing so, memorize and practice with the laws of signs we studied in Section 1.2. Moreover, many of the CLAST answers can be obtained by estimating them, so make sure you understand estimation before you go on.

<table>
<thead>
<tr>
<th>RULE TO ADD OR SUBTRACT DECIMALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RULE</td>
</tr>
<tr>
<td>1. Line up the decimal points, that is, write them in the same column.</td>
</tr>
<tr>
<td>2. If necessary, attach zeros to the right of the last digit so that they all have the same number of digits after the decimal point.</td>
</tr>
<tr>
<td>3. Perform the addition or subtraction working from right to left.</td>
</tr>
<tr>
<td>4. Don't forget to estimate your answer.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RULE TO ADD OR SUBTRACT DECIMALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMPLES</td>
</tr>
<tr>
<td>To add 1.78 and 0.265 follow the 3 steps given:</td>
</tr>
<tr>
<td>1. Write 1.78 and + 0.265</td>
</tr>
<tr>
<td>2. Attach a zero to 1.78. 1.780</td>
</tr>
<tr>
<td>(Now both numbers have three decimal places.)</td>
</tr>
<tr>
<td>3. Add the columns from right to left.</td>
</tr>
<tr>
<td>4. Since 1.78 → 2 and 0.265 → 0, the answer must be about 2. (It is!)</td>
</tr>
</tbody>
</table>

CLAST EXAMPLES

Example

7. 14.22 - 1.761 =

Before you do the arithmetic, note that 14.22 can be rounded to 14 and 1.761 can be rounded to 2, so the answer must be about 14 - 2 = 12. (A or D). Moreover, 14.22 = 14.220 which means that the last digit in the answer will be (10 - 1 = 9). So the answer must be A. Now, look at the solution to see why!

<table>
<thead>
<tr>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Align the decimal points. 14.22 - 1.761</td>
</tr>
<tr>
<td>2. Attach a 0 to 14.22 so both numbers have 3 decimal places. 14.220 - 1.761</td>
</tr>
</tbody>
</table>

ANSWERS

| 1. 7.43 2. - 11.16 3. - 2.42 4. 0.0048 5. - 0.416 |
| 6. 0.175 7. 2 8. 0.2 9. 200 |

Copyright © Houghton Mifflin Company. All rights reserved.
Example

8. \(-18.66 - 10.667\)

A. \(-28.733\) B. \(-7.993\)
C. \(-29.327\) D. \(7.993\)

Recall that \(a - b = a + (-b)\), thus
\[-18.66 - 10.667 = -18.66 + (-10.667)\]

Now, \(18.66 \rightarrow 19\) and \(10.667 \rightarrow 11\), so the answer is about \(-(19 + 11)\) and must end in 7, the last digit you get when we add \(18.660\) and \(10.667\). The answer must be C. Now, look at the solution to see why.

Solution

Since \(a - b = a + (-b)\)
\[-18.66 - 10.667 = -18.66 + (-10.667)\]

As you recall, to add two numbers with the same sign, we add the numbers and give the answer the common sign. Thus,

1. Align the decimal points. \(-18.66\)
 \(-10.667\)
2. Attach a 0 to 18.66. \(-18.660\)
3. Add and give the answer the common sign, which is -.
 \(-29.327\)

Example

9. \(16.4 - (-5.78)\)

A. \(21.18\) B. \(22.18\)
C. \(8.32\) D. \(6.62\)

The key here is to remember that:
\[a - (-b) = a + b\]

Now, \(16.4 \rightarrow 16\) and \(5.78 \rightarrow 6\), so the answer must be about \(16 + 6\) or 22. Also, the answer ends in 8, the last digit in the sum \(16.40 + 5.78\). The answer must be B. Now, look at the solution at the right.

Solution

Since \(a - (-b) = a + b\),
\[16.4 - (-5.78) = 16.4 + 5.78\]

1. Align the decimal points. \(16.4\)
 \(+ 5.78\)
2. Attach a 0 to 16.4. \(16.40\)
 \(+ 5.78\)
3. Add \(16.40\)
 \(+ 5.78\)
 \(22.18\)

<table>
<thead>
<tr>
<th>#</th>
<th>RULE TO MULTIPLY DECIMALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Multiply the two decimal numbers as if they were whole numbers.</td>
</tr>
<tr>
<td>2.</td>
<td>The number of decimal places in the product is the sum of the number of decimal places in the factors.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.43 (\times 2.7) 2.7 has 1 decimal place.</td>
</tr>
<tr>
<td>24.01</td>
</tr>
<tr>
<td>68.6</td>
</tr>
<tr>
<td>9.261 The answer has 2 + 1 = 3 decimal places.</td>
</tr>
</tbody>
</table>
RULE TO DIVIDE DECIMALS

RULE
1. To divide by a whole number place the decimal point directly above the decimal point in the dividend and divide as though dividing whole numbers.

2. If the divisor is not a whole number, multiply it and the dividend by the appropriate power of 10 (10, 100, and so on) so that the divisor is a whole number. Then proceed as indicated in 1.

To understand this procedure, you must recall that \(\frac{a}{b} = \frac{a \times c}{b \times c} \)
and that multiplying by a power of 10 moves the decimal point as many places to the right as there are 0's in the power of 10. Thus,

\[
\begin{align*}
3.487 \times 10 &= 34.87 \\
3.487 \times 100 &= 348.7 \\
3.487 \times 1000 &= 3487
\end{align*}
\]

In the problem \(\frac{6\overline{3.84}} {}, 3.84 \) is called the **dividend** and 6 is called the **divisor**. The answer is called the **quotient**.

EXAMPLES

To divide 3.84 by the **dividend**, the answer is about 9, so it is probably D. Now, look at the solution to see why.

<table>
<thead>
<tr>
<th>Example</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. 3.43 × 2.8 =</td>
<td>3.43 has 2 decimal places. 2.8 has 1 decimal place. The answer has 2 + 1 = 3 decimal places, so A and C are eliminated. The answer is D.</td>
</tr>
<tr>
<td>A. 0.9604</td>
<td>3.43</td>
</tr>
<tr>
<td>B. 8.504</td>
<td>2.8</td>
</tr>
<tr>
<td>C. 7.1344</td>
<td>3.43 \rightarrow 3, 2.8 \rightarrow 3, 9.604 \rightarrow 9, 604</td>
</tr>
</tbody>
</table>
| D. 9.604 | \underline{274.4} \\
| & \underline{68.6} \\
| & \underline{96} \\
| & 0 |

CLAST EXAMPLES

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. 3.43 × 2.8 =</td>
</tr>
<tr>
<td>A. 0.9604</td>
</tr>
<tr>
<td>C. 7.1344</td>
</tr>
<tr>
<td>First, estimate the answer. 3.43 \rightarrow 3, 2.8 \rightarrow 3, thus the answer should be about 9, so it is probably D.</td>
</tr>
</tbody>
</table>
Example

11. \((-0.04) \times (-1.2) =\)

A. - 0.48 B. -4.8 C. 0.048 D. 4.8

Hint: To save time, do not set up the problem in a column. Just multiply 4 by 12 and see the explanation on the right hand side!

Solution

First, recall that the multiplication of two numbers with the same sign is positive. Now, 0.04 has two decimal places and 1.2 has one decimal place, so the answer must have 1 + 2 = 3 decimal places. Since \(4 \times 12 = 48\) and the answer must have 3 decimal places, the answer is 0.048, that is, C.

Example

12. \(36.75 \div 0.05 =\)

A. 735 B. 73.5 C. 7.35 D. 0.0735

Some students understand the problem better when written as

\[
\frac{36.75}{0.05} = \frac{36.75 \times 100}{0.05 \times 100} = \frac{3675}{5} = 735
\]

Solution

\[
0.05 \overline{36.75} \quad \text{Multiply 0.05 by 100 and 36.75 by 100}
\]

\[
\begin{array}{c|c}
735 \\
5 \overline{3675} \\
-35 \\
17 \\
-15 \\
25 \\
25 \\
0
\end{array}
\]

The answer is A.

Example

13. \(-0.336 \div 0.07 =\)

A. -48 B. -4.8 C. 48 D. 0.48

Again, we might set up the problem as

\[
\frac{-0.336}{0.07} = \frac{-0.336 \times 100}{0.07 \times 100} = \frac{-33.6}{7}
\]

Solution

Multiply the dividend and divisor by 100 so we will be dividing -33.6 by the whole number 7, two numbers with different signs. Thus, the answer is negative.

Here is the division.

\[
\begin{array}{c|c}
4.8 \\
7 \overline{33.6} \\
-28 \\
56 \\
-56 \\
0
\end{array}
\]

Remember to align the decimal point in the quotient with the decimal point in the dividend.

Since the answer must be negative, it must be B.
Section 1.3 Exercises

WARM-UPS A

1. An investor owns 416.38 shares of a mutual fund valued at $30.28 per share. Find a reasonable estimate of the value of the investor's stock to the nearest hundred dollars.

2. Water is sold in thousand gallon units. If a unit of water costs $1.88 and 50.439 units were used, find a reasonable estimate of the bill to the nearest hundred dollars.

3. A student bought artichokes for $7.80, cucumbers for $2.29, lettuce for $3.75, tomatoes for $1.85, and broccoli for $2.90. Find a reasonable estimate of the total amount the student spent on vegetables by rounding each price to the nearest dollar.

4. A student bought a towel for $8.99, soap for $2.39, toothpaste for $3.79, shampoo for $1.79, a pair of shorts for $8.79 and a hat for $9.99. Find a reasonable estimate of the total purchases by rounding each quantity to the nearest dollar.

5. A herbicide is to be applied at the rate of 5.75 gallons per acre. Based on this fact, find, to the nearest hundred gallons, a reasonable estimate for the amount of herbicide needed for $154\frac{1}{2}$ acres.

6. A bag of bahia grass covers 1.75 acres. Based on this fact, what is a reasonable estimate of the number of acres that could be covered with $158\frac{1}{2}$ bags of seed? Answer to the nearest hundred acres.

7. A class of 70 students took a test. The highest score was 92 and the lowest 72. If 60, 70, 80 and 90 represent the lowest possible D, C, B and A grades, respectively, what would be a reasonable estimate of the class average?

8. A geometry class with 60 students took a test. All the students scored less than 80 but more than 60. If 60, 70, 80 and 90 represent the lowest possible D, C, B and A grades, respectively, what would be a reasonable estimate of the class average?

9. A company employs 40 people. The lowest paid person earns $400 per month, while the highest paid earns $600 per month, the monthly payroll for this company has to be about $______.
10. On a certain day, the Pizza Hot sold 80 pizzas. The lowest priced pizza is $6 and the highest priced $10. If they only sell $6 and $10 pizzas, a good estimate of their income for the day should be about $ _______.

11. The chart shows the closing prices of 10 leading stocks. The average price of the five stocks in the left hand column must be between ____ and ____.

<table>
<thead>
<tr>
<th>Stock</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amdahl</td>
<td>13(rac{3}{8})</td>
</tr>
<tr>
<td>USBio</td>
<td>10</td>
</tr>
<tr>
<td>ExploLA</td>
<td>1\frac{1}{4}</td>
</tr>
<tr>
<td>CalifEgy</td>
<td>12</td>
</tr>
<tr>
<td>Wang</td>
<td>2\frac{7}{8}</td>
</tr>
<tr>
<td>Nab</td>
<td>7\frac{3}{4}</td>
</tr>
<tr>
<td>EchoBay</td>
<td>6\frac{1}{2}</td>
</tr>
<tr>
<td>ElenCp</td>
<td>46</td>
</tr>
<tr>
<td>Fr.Loom</td>
<td>37\frac{5}{8}</td>
</tr>
<tr>
<td>AmExpl</td>
<td>2\frac{3}{4}</td>
</tr>
</tbody>
</table>

12. The average price of the five stocks in the right hand column must be between ____ and ____.

13. Twentieth Century Ultra Mutual fund is currently selling for $15.18 per share. If an investor buys 215.326 shares of this fund, a reasonable estimate for the cost would be:

A. $3000
B. $320
C. $4000
D. $30,000

14. A student bought mangos for $7.60, bananas for $1.99, nectarines for $3.39, grapes for $2.88, strawberries for $7.75, apricots for $3.76 and oranges for $5.90. Which of the following would be a reasonable estimate of the total amount the student spent on fruits?

A. $26
B. $30
C. $34
D. $36

15. A fertilizer has to be applied at the rate of 4.78 gallons per acre. If the fertilizer is applied at the given rate, what would be a reasonable estimate for the amount of fertilizer needed for 257\frac{1}{2} acres?

A. 100 gallons
B. 1250 gallons
C. 1000 gallons
D. 125 gallons

16. 500 students took a placement test. All of the students scored more than 37 but less than 48. Which of the following would be a reasonable estimate of the average score for the students?

A. 53
B. 37
C. 42
D. 36
17. A company employs 10 people. The lowest paid person earns $175 per week and the highest paid earns $200 per week. Which of the following would be a reasonable estimate of the total weekly payroll for the 10?

A. $1750 B. $1875 C. $2000 D. $180

18. Here are the prices of the 5 most active stocks on the American Exchange and their closing prices per share in dollars.

What would be a reasonable estimate of the average price per share for these stocks?

A. $2 B. $14 C. $13 D. $8

WARM-UPS B

19. 0.23 + 5.737 =
20. 5.26 + 0.615 =
21. 9.64 - 2.671 =
22. 18.30 - 2.497 =
23. -19.23 - 7.839 =
24. -10.72 - 4.131 =
25. 5.13 - (-3.496) =
26. 3.58 - (-5.651) =
27. 6.15 × 9.6 =
28. 6.26 × 15.5 =
29. -4.05 × 1.8 =
30. -6.25 × 7.4 =
31. 14.58 ÷ 0.05 =
32. 17.35 ÷ 0.05 =
33. -0.372 ÷ 0.06 =
34. -0.522 ÷ 0.09 =

CLAST PRACTICE B

PRACTICE PROBLEMS: Chapter 1, #15-21

35. 2.78 + 0.238 =
A. 5.16 B. 3.018 C. 1.146 D. 1.02018

36. 7.72 - 1.202 =
A. 6.518 B. 5.870 C. 7.518 D. 5.518

Copyright © Houghton Mifflin Company. All rights reserved.
37. \(-17.24 - 8.848 = \)

A. \(-25.872\) B. \(-8.392\) C. \(-26.088\) D. \(8.392\)

38. \(5.378 - (-1.37) = \)

A. \(6.748\) B. \(6.415\) C. \(4.008\) D. \(-4.008\)

39. \(4.04 \times 1.1 = \)

A. \(4.4044\) B. \(4.0804\) C. \(0.444\) D. \(4.444\)

40. \(-6.25 \times 7.5 = \)

A. \(46.875\) B. \(-46.875\) C. \(4.6875\) D. \(-4.6875\)

41. \(7.2 \div 0.5 = \)

A. \(1.44\) B. \(0.00144\) C. \(14.4\) D. \(0.144\)

42. \(-0.039 \div 0.03 = \)

A. \(-1.3\) B. \(-13\) C. \(13\) D. \(0.13\)

EXTRA CLAST PRACTICE

43. \(9 - 0.291 = \)

A. \(1.509\) B. \(8.709\) C. \(9.291\) D. \(9.819\)

44. \((-0.05) \times (-7.22) = \)

A. \(36.10\) B. \(-0.3610\) C. \(0.3610\) D. \(-36.10\)

45. \(-18 \div (-0.06)\)

A. \(3\) B. \(30\) C. \(3000\) D. \(300\)

46. Reynaldo has 5 items to buy with a $20 bill. The most expensive item he buys is $3.69 and the least expensive item is $1.18. Which of the following is a reasonable estimate of his bill?

A. $10 B. $5 C. $20 D. $3
Rational numbers can be written as fractions, mixed numbers, decimals or percents. In this section we shall study how these three types of representations are related, compare rationals as to their magnitude (size) and infer some relations between number pairs.

A. Equivalent Forms of Rational Numbers

<table>
<thead>
<tr>
<th>Objective IIA3</th>
<th>CLAST SAMPLE PROBLEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Change 2.45 to a percent</td>
<td>2. Write 0.06 as a fraction</td>
</tr>
<tr>
<td>4. Change 3% to a decimal</td>
<td>5. Change 17.3% to a decimal</td>
</tr>
<tr>
<td>7. Change $\frac{1}{4}$ to a decimal</td>
<td>8. Change $1\frac{2}{5}$ to a decimal</td>
</tr>
<tr>
<td>9. Change $\frac{2}{5}$ to a percent</td>
<td></td>
</tr>
</tbody>
</table>

Is 0.17 a rational number? We can prove that it is by writing 0.17 as a fraction. To read 0.17, read the number to the right of the decimal point (seventeen) and follow by the place value of the last digit (hundredths). Thus, 0.17 is "seventeen hundredths," that is, $0.17 = \frac{17}{100}$. The number $\frac{17}{100}$ also means 17 percent and written as 17%. Thus, $0.17 = \frac{17}{100} = 17\%$.

Here are the rules you need to convert from one form to another.

<table>
<thead>
<tr>
<th>1</th>
<th>TO CONVERT RATIONALS FROM ONE FORM TO another</th>
<th>RULE</th>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To convert a fraction to a decimal, divide the numerator by the denominator.</td>
<td>To convert $\frac{3}{4}$ to a decimal, divide 3 by 4. The result is 0.75</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\frac{3}{4} \div 4 = 0.75$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$3 \div 4 = 0.75$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

ANSWERS

<table>
<thead>
<tr>
<th>1</th>
<th>245%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$\frac{3}{50}$</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{19}{10}$</td>
</tr>
<tr>
<td>4</td>
<td>0.03</td>
</tr>
<tr>
<td>5</td>
<td>0.173</td>
</tr>
<tr>
<td>6</td>
<td>$\frac{23}{50}$</td>
</tr>
<tr>
<td>7</td>
<td>0.25</td>
</tr>
<tr>
<td>8</td>
<td>1.4</td>
</tr>
<tr>
<td>9</td>
<td>40%</td>
</tr>
</tbody>
</table>

Copyright © Houghton Mifflin Company. All rights reserved.
TO CONVERT RATIONALS FROM ONE FORM TO ANOTHER (CONT.)

To convert a decimal to a fraction, write the decimal as the numerator of the fraction (omit the decimal point) and the denominator as a 1 followed by as many zeros as there are decimal places in the decimal.

Note: If you understand the diagram on page 12 you will know that 0.27 is read as "twenty-seven hundredths". Thus,

\[0.27 = \frac{27}{100} \]

No rule is needed!

RULE (DECIMAL TO PERCENT)

To convert a decimal to a percent move the decimal point 2 places to the right and add the % symbol.

EXAMPLES

- 0.89 = 89%
- 8.9 = 890% (Note that we added a 0.)
- 0.08 = 8%

RULE (PERCENT TO DECIMAL)

To convert a percent to a decimal, move the decimal point 2 places left and drop the % symbol.

EXAMPLES

- 49% = 0.49
- 3% = 0.03 (Note that we added a 0.)
- 147% = 1.47

RULE (FRACTION TO PERCENT)

To convert a fraction to a percent change the fraction to a decimal (make sure you have at least two decimal places), then change the decimal to a percent.

EXAMPLES

- \(\frac{3}{4} = 0.75 = 75\% \)
- \(\frac{1}{5} = 0.20 = 20\% \)

RULE (PERCENT TO FRACTION)

To convert a percent to a fraction write the number over 100 and reduce the fraction (if possible).

EXAMPLES

- 42% = \(\frac{42}{100} = \frac{21}{50} \)
- 0.7% = \(\frac{0.7}{100} = \frac{0.7\times10}{100\times10} = \frac{7}{1000} \)
- 158% = \(\frac{158}{100} = \frac{79}{50} \)
The following chart shows the equivalent relationship among some common decimals, fractions and percents. Try to memorize as many as you can!

<table>
<thead>
<tr>
<th>FRACTION</th>
<th>DECIMAL</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{4})</td>
<td>0.25</td>
<td>25%</td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>0.50</td>
<td>50%</td>
</tr>
<tr>
<td>(\frac{3}{4})</td>
<td>0.75</td>
<td>75%</td>
</tr>
<tr>
<td>(\frac{1}{10})</td>
<td>0.10</td>
<td>10%</td>
</tr>
<tr>
<td>(\frac{2}{10})</td>
<td>0.20</td>
<td>20%</td>
</tr>
<tr>
<td>(\frac{3}{10})</td>
<td>0.30</td>
<td>30%</td>
</tr>
<tr>
<td>(\frac{1}{3})</td>
<td>0.333... (\approx) 0.3</td>
<td>(\approx) (\frac{1}{3})%</td>
</tr>
<tr>
<td>(\frac{2}{3})</td>
<td>0.666... (\approx) 0.6</td>
<td>(\approx) (\frac{2}{3})%</td>
</tr>
</tbody>
</table>

CLAST EXAMPLES

Example

1. \(0.19 = \)
 A. \(\frac{19}{100}\) %
 B. \(\frac{9}{10}\)
 C. \(\frac{19}{10}\)
 D. \(\frac{19}{100}\)

 Note: Another correct answer is 19%. The CLAST does not tell you what type of answers they want, you may need to look for the correct answer.

 Solution

 0.19 is read as "19 hundredths". Thus, \(0.19 = \frac{19}{100}\). (If you use the rule, you would write 19 as the numerator with a denominator of 1 followed by two zeros, since there are two decimal places in 0.19.) In either case, the answer is D.

2. \(350\% = \)
 A. 0.350
 B. 3.50
 C. 350.0
 D. 3500

 Note: All answer choices are decimals, so you must change 350% to a decimal.

 Solution

 To change 350% to a decimal, move the decimal point 2 places left in 350 and drop the % symbol. Thus, \(350\% = 3.50\). The answer is B. If we wanted answers in fractional form, we would select \(\frac{350}{100} = \frac{7}{2}\).
Example

3. \[
\frac{23}{25} =
\]

A. 0.92 B. 0.092 C. 9.2% D. 0.92%

Note that it is immaterial if the answer is a percent or a decimal, you have to start by dividing 23 by 25 unless you notice that you can get a denominator of 100 by multiplying numerator and denominator by 4. Thus,

\[
\frac{23}{25} = \frac{23 \times 4}{25 \times 4} = \frac{92}{100} = 0.92
\]

The answer is A.

B. Order Relations (Comparing Numbers)

<table>
<thead>
<tr>
<th>Objective IIA4</th>
<th>CLAST SAMPLE PROBLEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compare:</td>
<td></td>
</tr>
<tr>
<td>1. (\frac{2}{5}) and (\frac{4}{9})</td>
<td>2. (-\frac{2}{5}) and (-\frac{4}{9})</td>
</tr>
<tr>
<td>4. (5\frac{1}{2}) and (5.1\bar{2})</td>
<td>5. (\frac{3}{5}) and 0.62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>TERMINOLOGY--TRICHOTOMY LAW</th>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TRICHOTOMY LAW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For any two numbers (a) and (b), exactly one of the following must occur:</td>
<td>Given the two numbers -3 and 4, we know that -3 < 4 (a negative number is always less than a positive number).</td>
</tr>
<tr>
<td></td>
<td>(a = b) \hspace{1cm} (2) (a < b) \hspace{1cm} (3) (a > b)</td>
<td>Given the numbers 8 and 5 we know that 5 < 8 or equivalently, 8 > 5.</td>
</tr>
<tr>
<td></td>
<td>(a < b) is read as "(a) is less than (b)"</td>
<td>Given the decimals 0.34 and 0.84, we know that 0.34 < 0.84 or 0.84 > 0.34</td>
</tr>
<tr>
<td></td>
<td>(a > b) is read as "(a) is greater than (b)"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>When a bar is placed over the decimal part of a number, it indicates that the number under the bar repeats indefinitely.</td>
<td></td>
</tr>
</tbody>
</table>

| ANSWERS | 1. \(\frac{2}{5}\) < \(\frac{4}{9}\) | 2. \(-\frac{2}{5}\) > \(-\frac{4}{9}\) | 3. 3.42 < 3.423 | 4. \(5\frac{1}{2}\) < 5.12 |
| | 5. \(\frac{3}{5}\) < 0.62 | 6. \(\sqrt{27}\) > 5 | 7. 8.9 < \(\sqrt{85}\) |
TERMINOLOGY--SQUARE ROOTS

The square root of a natural number \(a \), denoted \(\sqrt{a} \), is a number \(b \) such that \(b^2 = a \). If the result is a whole number, the number has a *perfect* square root, otherwise the number is an *irrational* number (not rational).

| \(\sqrt{16} = 4 \) because \(4^2 = 16 \) |
| \(\sqrt{4} = 2 \) because \(2^2 = 4 \) |
| \(\sqrt{64} = 8 \) because \(8^2 = 64 \) |
| \(\sqrt{8}, \sqrt{2}, \sqrt{15}, \sqrt{17} \) and \(\sqrt{131} \) are irrational numbers. |

The CLAST asks to compare *two decimals*, *two fractions*, a *fraction* and a *decimal* or an *irrational number* and a *decimal*. Here are the rules we need.

RULE

TO COMPARE TWO FRACTIONS

To compare two fractions, write them with a common denominator. The fraction with the larger numerator is greater. Alternatively, we can use the following "cross multiplication" rules:

\[
\frac{a}{b} < \frac{c}{d} \quad \text{means} \quad a \times d < b \times c
\]

\[
\frac{a}{b} > \frac{c}{d} \quad \text{means} \quad a \times d > b \times c
\]

EXAMPLES

To compare \(\frac{10}{18} \) and \(\frac{5}{9} \), write \(\frac{5}{9} \) with a denominator of 18. Thus, \(\frac{5}{9} = \frac{5 \times 2}{9 \times 2} = \frac{10}{18} \).

In this case, \(\frac{5}{9} = \frac{10}{18} \).

To compare \(\frac{9}{13} \) and \(\frac{17}{22} \), we use the "cross multiplication rule".

\[
9 \times 22 = 198 \quad \text{and} \quad 13 \times 17 = 221.
\]

Since \(9 \times 22 = 198 < 13 \times 17 = 221 \), then

\[
\frac{9}{13} < \frac{17}{22}
\]

RULE

TO COMPARE TWO DECIMALS

To compare two decimals, write them in a column with the decimal points aligned. Compare corresponding digits starting at the left. When two digits differ, the number with the larger digit is the larger of the two numbers.

EXAMPLES

To compare \(5.3\overline{7} \) and \(5.3\overline{7} \)

\[
5.3\overline{7} = 5.373737 \quad \text{(the 37 repeats)}
\]

\[
5.3\overline{7} = 5.377777 \quad \text{(the 7 repeats)}
\]

The first three digits, 5, 3 and 7 are the same in both numbers. The fourth digit in the first number is 3, in the second number it is 7.

Thus, the second number, \(5.3\overline{7} \), is greater.

We then write \(5.3\overline{7} > 5.3\overline{7} \).

Copyright © Houghton Mifflin Company. All rights reserved.
TO COMPARE A FRACTION AND A DECIMAL

RULE
To compare a fraction and a decimal, change the fraction to a decimal by dividing the numerator by the denominator and use the rule to compare decimals given in box 3 above.

EXAMPLES
To compare 0.20 and \(\frac{1}{4} \), write \(\frac{1}{4} \) as a decimal by dividing 1 by 4.

\[
\begin{array}{c}
0.25 \\
\frac{4}{1.00} \\
- 8 \\
20 \\
- 20 \\
0
\end{array}
\]

Since 0.20 < 0.25, we have 0.20 < \(\frac{1}{4} \).

TO COMPARE AN IRRATIONAL WITH A DECIMAL

RULE
To compare an irrational number of the form \(\sqrt{a} \) with a decimal, compare the decimal with the closest perfect square root to \(\sqrt{a} \) and use the fact that

\[\sqrt{a} > \sqrt{b} \text{ means that } a > b \]

and

\[\sqrt{a} < \sqrt{b} \text{ means that } a < b. \]

EXAMPLES
To compare \(\sqrt{70} \) and 7.\(\overline{8} \) note that

\[\sqrt{64} = 8 > 7.\overline{8} \]

Since \(\sqrt{70} > \sqrt{64} > 7.\overline{8} \), \(\sqrt{70} > 7.\overline{8} \).

To compare 4.25 and \(\sqrt{15} \) note that

\[\sqrt{16} = 4 < 4.25 \]

Since \(\sqrt{15} < \sqrt{16} < 4.25 \), \(\sqrt{15} < 4.25 \).

CLAST EXAMPLES

Example
4. Identify the symbol that should be placed in the box to form a true statement.

\[\frac{1}{5} \quad \square \quad - \frac{5}{9} \]

A. = B. < C. >

Solution
A positive number is always greater than a negative number, so \(\frac{1}{5} \) must be greater than \(- \frac{5}{9} \). The correct answer is C.
Example

5. Identify the symbol that should be placed in the box to form a true statement.

\[
\frac{5}{26} \square \frac{11}{20}
\]

A. = B. < C. >

Solution

We use the "cross multiplication" rule.

\[
5 \times 20 = 100 \quad \text{and} \quad 26 \times 11 = 286
\]

Since \(5 \times 20 < 26 \times 11\)

\[
\frac{5}{26} < \frac{11}{20}
\]

The correct answer is B.

Example

6. Identify the symbol that should be placed in the space to form a true statement.

\[
8.\overline{61} \square 8.\overline{61}
\]

A. = B. < C. >

Solution

Write \(8.\overline{61} = 8.616161\ldots\) (61 repeats)

and \(8.\overline{61} = 8.611111\ldots\) (1 repeats)

The first three digits from the left are the same in both numbers: 8, 6 and 1. The fourth digit in the first number is 6, in the second number it is 1. Thus, the first number is greater, that is,

\(8.\overline{61} > 8.\overline{61}\). The correct answer is C.

Example

7. Identify the symbol that should be placed in the box to form a true statement.

\[
-7 \frac{1}{5} \square -6 \frac{2}{5}
\]

A. = B. < C. >

Solution

Since \(-7 < -6\), \(-7 \frac{1}{5} < -6 \frac{2}{5}\).

The correct answer is B.

Example

8. Identify the symbol that should be placed in the box to form a true statement.

\[
0.82 \square \frac{17}{20}
\]

A. = B. < C. >

Solution

To compare 0.82 and \(\frac{17}{20}\) we write both numbers as decimals. Either divide 17 by 20 or note that:

\[
\frac{17}{20} = \frac{17 \times 5}{20 \times 5} = \frac{85}{100} = 0.85
\]

Since 0.82 < 0.85, the correct answer is B.
Example

9. Identify the symbol that should be placed in the box to form a true statement.

\[
\sqrt{30} \quad ? \quad 7.2
\]

A. = B. < C. >

<table>
<thead>
<tr>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Since (\sqrt{30} = 6 < 7.2) and (\sqrt{30} < 7.2) (\sqrt{30} < 7.2) Thus, the correct answer is B.</td>
</tr>
</tbody>
</table>

C. Number Sequences

Objective IIIA1 CLAST SAMPLE PROBLEMS

Look for a common linear relationship, then find the missing term:

1. (4, 2) (0.16, 0.08) (-20, -10) \(\left(\frac{1}{2}, \frac{1}{10} \right) \) \(\left(\frac{1}{3}, ? \right) \)
2. (13, 10) (7, 4) (-2, -5) (0, -3) (-6, ?)

3. Look for a common quadratic relationship, then find the missing term:

\[
(36, 6) \quad (64, 8) \quad (1, 1) \quad \left(\frac{1}{9}, \frac{1}{3} \right) \quad (81, ?)
\]

4. Identify the missing term in the arithmetic progression: 4, 9, 14, 19, 24, __________

5. Identify the missing term in the geometric progression: 8, -4, 2, -1, \(\frac{1}{2} \), __________

6. Identify the missing term in the harmonic progression: \(\frac{1}{3}, \frac{1}{7}, \frac{1}{11}, \frac{1}{15}, \frac{1}{19} \), __________

A sequence or progression is a sequence of numbers arranged according to some given law. We shall discuss three types of sequences next.

<table>
<thead>
<tr>
<th>T</th>
<th>TERMINOLOGY--SEQUENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEQUENCE</td>
<td>EXAMPLES</td>
</tr>
<tr>
<td>An arithmetic progression is a sequence in which each term after the first is obtained by adding a constant (c), the common difference, to the preceding term.</td>
<td>1, 3, 5, ... (Add 2 to the preceding term.) -4, -1, 2, ... (Add 3 to the preceding term.)</td>
</tr>
<tr>
<td>A geometric progression is a sequence in which each term after the first is obtained by multiplying the preceding term by a constant (r), the common ratio.</td>
<td>2, 6, 18,... (Multiply the preceding term by 3.) -10, 20,-40,... (Multiply the preceding term by -2.)</td>
</tr>
<tr>
<td>A harmonic progression is a sequence in which each term after the first is obtained by adding a constant value to the denominator of each term.</td>
<td>1, (\frac{1}{2}, \frac{1}{3}),... (Add 1 to the denominator.) (\frac{4}{2}, \frac{4}{3}, \frac{4}{4}, \frac{4}{5}),... (Add 1 to the denominator.)</td>
</tr>
</tbody>
</table>

This sequence is usually written as: 2, \(\frac{4}{3}, 1, \frac{4}{5} \),...

ANSWERS

1. \(\frac{1}{6} \) 2. -9 3. 9 4. 29 5. \(-\frac{1}{4} \) 6. \(\frac{1}{23} \)
CLAST EXAMPLES

Example

10. Identify the missing term in the following geometric progression

-1, $\frac{1}{4}$, $\frac{1}{16}$, $\frac{1}{64}$, $\frac{1}{256}$, ___

A. $\frac{1}{2048}$ B. $\frac{1}{1024}$
C. $-\frac{1}{1024}$ D. $\frac{1}{4}$

Solution

Since we have a geometric progression, we have to multiply by a constant to get the next term. What do we have to multiply -1 by in order to get the second term, $\frac{1}{4}$?

The answer is $-\frac{1}{4}$ (Check: $-1 \times \left(-\frac{1}{4}\right) = \frac{1}{4}$)

Thus, the missing term is $\left(-\frac{1}{4}\right) \times \left(-\frac{1}{256}\right)$ or $\frac{1}{1024}$. The answer is B.

Note: Another way to find out the number that each term must be multiplied by to get the next term, is to divide one term by the preceding term. Thus, if we divide $\frac{1}{4}$ by -1, we obtain $-\frac{1}{4}$ as before.

Example

11. Identify the missing term in the following arithmetic progression

6, 10, 14, 18, 22, ____

A. 18 B. 25 C. 26 D. 88

Solution

Since we have an arithmetic progression, we have to add a constant to get the next term. What do we have to add to 6 in order to get the second term, 10? The answer is 4 (Check: $6 + 4 = 10$)

Thus, the missing term is $22 + 4 = 26$

The answer is C.

Example

12. Identify the missing term in the following harmonic progression

$\frac{1}{2}$, $\frac{1}{5}$, $\frac{1}{8}$, $\frac{1}{11}$, $\frac{1}{14}$, ___

A. $\frac{1}{42}$ B. $\frac{1}{17}$ C. $\frac{1}{2}$ D. 17

Solution

Since we have a harmonic progression, where all numerators are 1. What do we have to add to the denominator 2 in order to get the second denominator, 5. The answer is 3 (Check: $2 + 3 = 5$)

Thus, the missing term is $\frac{1}{14} + 3 = \frac{1}{17}$

The answer is B.
Example

13. Look for a common linear relationship between the numbers in each pair. Then identify the missing term

\((3,1), (0.6, 0.2), (-6, -2), (\frac{3}{2}, \frac{1}{2}), (\frac{1}{3}, __)\)

A. \(\frac{2}{3}\) B. 1 C. \(\frac{1}{9}\) D. \(\frac{3}{2}\)

Note: Linear relationships involve adding, subtracting, multiplying or dividing one of the numbers in the pair to obtain the other number in the pair.

Solution

Look at the first ordered pair \((3, 1)\). Note that the first number is 3 times the second number, or equivalently, that the second number is \(\frac{1}{3}\) of the first number. This is true in every pair. Thus, if we are given the pair \((\frac{1}{3}, __)\), the second number must be \(\frac{1}{3}\) of the first number, that is, \(\frac{1}{3} \times \frac{1}{3} = \frac{1}{9}\). The correct answer is C.

Section 1.4 Exercises

WARM-UPS A

WRITE AS A FRACTION

1. 0.27
 2. 0.46
 3. 2.2
 4. 3

WRITE AS A DECIMAL

5. \(\frac{3}{4}\)
 6. \(\frac{3}{25}\)
 7. \(\frac{9}{20}\)
 8. \(\frac{7}{4}\)
 9. 150%
 10. 450%
 11. 18%
 12. 49%
 13. 3.2%
 14. 8.9%
 15. \(\frac{81}{4}\)%
 16. \(\frac{93}{4}\)%
WRITE AS A PERCENT

17. 0.07
18. 0.01
19. 0.36
20. 0.85
21. 0.139
22. 0.384
23. 3.12
24. 5.06
25. \(\frac{31}{4}\)
26. \(\frac{1}{2}\)
27. \(0.18\frac{1}{5}\)
28. \(0.21\frac{2}{5}\)
29. \(0.02\frac{4}{5}\)
30. \(0.09\frac{1}{2}\)
31. \(\frac{3}{20}\)
32. \(\frac{5}{25}\)
33. \(\frac{7}{8}\)
34. \(\frac{1}{2}\)
35. \(\frac{3}{8}\)
36. \(\frac{6}{25}\)

WRITE AS A FRACTION

37. 39%
38. 12%
39. \(14\frac{1}{2}\) %
40. \(28\frac{3}{4}\) %

CLAST PRACTICE A

PRACTICE PROBLEMS: Chapter 1, # 22-25

41. 0.94 =
A. \(\frac{47}{50}\) B. 9.4% C. \(\frac{47}{5}\) D. \(\frac{47}{50}\) %

42. 0.24 =
A. \(\frac{12}{5}\) B. 2.4% C. \(\frac{6}{25}\) % D. \(\frac{6}{25}\)

43. 387% =
A. 0.387 B. 3870.0 C. 3.87 D. 387.0
44. \[305\% = \]
 A. 3.05 B. 0.305 C. 3050.0 D. 305.0

45. \[\frac{13}{25} = \]
 A. 5.2% B. 0.52% C. 0.052 D. 0.52

46. \[\frac{13}{20} = \]
 A. 0.65 B. 6.5% C. 0.65% D. 0.065

WARM-UPS B

Which of the symbols =, < or > should be placed in the box to form a true statement?

47. \[-\frac{3}{8} \quad \square \quad \frac{33}{100} \]
48. \[\frac{19}{100} \quad \square \quad -\frac{1}{5} \]
49. \[\frac{3}{4} \quad \square \quad \frac{24}{37} \]
50. \[\frac{3}{34} \quad \square \quad \frac{2}{21} \]
51. \[6.82 \quad \square \quad 6.872 \]
52. \[5.74 \quad \square \quad 5.723 \]
53. \[3.17 \quad \square \quad 3.17 \]
54. \[9.96 \quad \square \quad 9.96 \]
55. \[0.28 \quad \square \quad \frac{7}{25} \]
56. \[0.30 \quad \square \quad \frac{3}{10} \]
57. \[\sqrt{50} \quad \square \quad 6.98 \]
58. \[\sqrt{20} \quad \square \quad 5.2 \]
59. \[9.8 \quad \square \quad \sqrt{80} \]
60. \[6.71 \quad \square \quad \sqrt{50} \]

CLAST PRACTICE B

PRACTICE PROBLEMS: Chapter 1, #26-30

IN PROBLEMS 61-70 IDENTIFY THE SYMBOL THAT SHOULD BE PLACED IN THE BOX TO FORM A TRUE STATEMENT.

61. \[\frac{6}{17} \quad \square \quad -\frac{14}{15} \]
 A. = B. < C. >
62. \[-\frac{3}{4} \quad \square \quad \frac{4}{7} \]
 A. = B. < C. >
63. \[\frac{9}{15} \quad \square \quad \frac{15}{25} \]
 A. = B. < C. >
64. \[\frac{3}{4} \quad \square \quad \frac{24}{29} \]
 A. = B. < C. >

Copyright © Houghton Mifflin Company. All rights reserved.
65. 3.283 □ 3.28
A. = B. < C. >
66. 2.84 □ 2.877
A. = B. < C. >

67. 1.68 □ 1.68
A. = B. < C. >
68. 2.96 □ 2.96
A. = B. < C. >

69. 0.55 □ \frac{11}{20}
A. = B. < C. >
70. 0.34 □ \frac{7}{20}
A. = B. < C. >

71. \sqrt{37} □ 5.3
A. = B. < C. >
72. 5.9 □ \sqrt{40}
A. = B. < C. >

WARM-UPS C
73. Identify the missing term in the following geometric progression:
2, -\frac{2}{3}, \frac{2}{9}, -\frac{2}{27}, \frac{2}{81}, ___
74. Identify the missing term in the following geometric progression:
4, -\frac{4}{3}, \frac{4}{9}, -\frac{4}{27}, \frac{4}{81}, ___
75. Identify the missing term in the following arithmetic progression:
-1, 1, 3, 5, 7, ___
76. Identify the missing term in the following arithmetic progression:
-10, -12, -14, -16, -18, ___
77. Identify the missing term in the following harmonic progression:
\frac{1}{6}, \frac{1}{15}, \frac{1}{24}, \frac{1}{33}, \frac{1}{42}, ___
78. Identify the missing term in the following harmonic progression:
\frac{1}{10}, \frac{1}{20}, \frac{1}{30}, \frac{1}{40}, \frac{1}{50}, ___

In Problems 79 and 80, look for a common linear relationship between the numbers in each pair. Then identify the missing term.
79. (20, 5), (1.2, 0.3), (-8, -2), \left(\frac{1}{10}, \frac{1}{40}\right), (44, 11), \left(\frac{1}{3}, ___\right)
80. (12, 4), (0.6, 0.2), (-3, -1), \left(\frac{1}{5}, \frac{1}{15}\right), (24, 8), \left(\frac{1}{2}, ___\right)
CLAST PRACTICE C

PRACTICE PROBLEMS: Chapter 1, #31-33

81. Look for a common linear relationship between the numbers in each pair. Then identify the missing term.

(12, 3), (0.4, 0.1), (-20, -5), \(\frac{1}{5}, \frac{1}{20}\), (24, 6), \(\frac{1}{3}, ____\)

A. \(\frac{3}{2}\) B. \(\frac{2}{3}\) C. 12 D. \(\frac{1}{12}\)

82. Identify the missing term in the following geometric progression:

5, \(-\frac{5}{3}\), \(\frac{5}{9}\), \(-\frac{5}{27}\), \(\frac{5}{81}\), ___

A. \(-\frac{5}{243}\) B. \(\frac{5}{243}\) C. \(-\frac{5}{486}\) D. \(\frac{1}{3}\)

EXTRA CLAST PRACTICE

83. Identify the symbol that should be placed in the box to form a true statement.

\(\frac{5}{7} \quad \square \quad \frac{2}{3}\)

A. = B. < C. >

84. Identify the symbol that should be placed in the box to form a true statement.

\(-\frac{5}{7} \quad \square \quad -\frac{2}{3}\)

A. = B. < C. >

85. \(5.3 \quad \square \quad 5\frac{3}{10}\)

A. = B. < C. >

86. \(\frac{4}{5} =\)

A. 0.3771 B. 2.08 C. 2.8% D. 2.8
1.5 PERCENTS

In this section we shall use the information we have learned about fractions, decimals and percents to solve percent problems. We begin by studying percent increase and decrease, then discussing three types of percent problems, and we end the section with word problems involving percents.

A. Calculating Percent Increase or Decrease

Objective IA3

CLAST SAMPLE PROBLEMS

1. If you increase 600 by 25% of itself, what is the result?
2. A computer that costs $800 is discounted 20%. What is the new cost of this computer?
3. If 400 is decreased to 100, what is the percent of decrease?
4. A worker's salary changes from $1000 to $1200 per week. What is the percent increase?

When you are given a number and you are asked to find the percent increase or decrease, you can use the following rules:

<table>
<thead>
<tr>
<th>FINDING PERCENT INCREASE OR DECREASE</th>
<th>RULE</th>
<th>EXAMPLES</th>
</tr>
</thead>
</table>
| Percent change = \[
\frac{\text{change}}{\text{original number}}\] | If 20 is decreased to 15, what is the percent decrease? |
| | The change is \(20 - 15 = 5\) and the original number is 20 |
| | Percent change = \[
\frac{5}{20} = \frac{25}{100} = 25\%\] |
| | Note that we multiplied the numerator and denominator of \[
\frac{5}{20}\] by 5 to make the denominator 100. This is easier than dividing 5 by 20 and changing the answer to a percent! |

ANSWERS: 1. 750 2. 640 3. 75% 4. 20%
In some problems, an increase or decrease is given as a percent of a number. Here is the rule you need:

To find a percent of a number, write the percent as a decimal and multiply by the number.

<table>
<thead>
<tr>
<th>FINDING PERCENT INCREASE OR DECREASE (CONT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In some problems, an increase or decrease is given as a percent of a number. Here is the rule you need:</td>
</tr>
<tr>
<td>FINDING PERCENT INCREASE OR DECREASE (CONT.)</td>
</tr>
<tr>
<td>In some problems, an increase or decrease is given as a percent of a number. Here is the rule you need:</td>
</tr>
<tr>
<td>To find a percent of a number, write the percent as a decimal and multiply by the number.</td>
</tr>
<tr>
<td>If you increase 50 by 60% of itself, what is the result?</td>
</tr>
<tr>
<td>Let us translate the problem:</td>
</tr>
<tr>
<td>Increase 50 by 60% of itself</td>
</tr>
<tr>
<td>↓</td>
</tr>
<tr>
<td>= 50 + (60% of 50)</td>
</tr>
<tr>
<td>= 50 + (0.60 × 50)</td>
</tr>
<tr>
<td>= 50 + 30</td>
</tr>
<tr>
<td>= 80</td>
</tr>
<tr>
<td>Thus, when we increase (add to) 50 by 60% of itself (0.60 × 50 = 30), the result is 50 + 30 = 80.</td>
</tr>
</tbody>
</table>

CLAST EXAMPLES

Video Example

1. If 30 is decreased to 6, what is the percent decrease?

 A. 8% B. 24% C. 20% D. 80%

 Remember to reduce your fraction and write it with a denominator of 100 (if possible) to make the percent conversion easier.

 Solution

 If the original number 30 is decreased to 6, the **change** is 30 - 6 or 24.

 Now, \(\% \text{ change} = \frac{\text{change}}{\text{original number}} \)

 \[\frac{24}{30} = \frac{4}{5} = \frac{80}{100} \]

 Thus, the percent decrease is 80%, D.

2. If you increase 30 to 36, what is the percent increase?

 A. 600% B. 2% C. 20% D. 83%

 Solution

 Here the change is 36 - 30 = 6, and the original number is 30. We have:

 \[\% \text{ change} = \frac{\text{change}}{\text{original number}} \]

 \[\frac{6}{30} = \frac{1}{5} = \frac{20}{100} \]

 The correct answer is C.
Example

3. If you increase 10 by 20% of itself, what is the result?

A. 8 B. 2 C. 12 D. 30

Note that the answer has to be more than 10 (C or D) since 10 is being increased by 20% of itself.

Solution

Note that you do not use the formula here. We must increase 10 by 20% of itself. Here is the translation:

<table>
<thead>
<tr>
<th>Increase 10 by</th>
<th>20% of itself</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>10</td>
<td>0.20 × 10</td>
</tr>
<tr>
<td>= 10</td>
<td>+ 2</td>
</tr>
<tr>
<td>= 12</td>
<td></td>
</tr>
</tbody>
</table>

The answer is C.

B. Percent Problems

<table>
<thead>
<tr>
<th>Objective IA4</th>
<th>CLAST SAMPLE PROBLEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 3% of 200?</td>
<td>2. 120% of 26?</td>
</tr>
<tr>
<td>4. 120% of</td>
<td>5. 12% of 60?</td>
</tr>
<tr>
<td>6 is 12% of</td>
<td>6. 64% of 32?</td>
</tr>
</tbody>
</table>

Percent problems require finding the base or total (B), the percentage (P) or the percent or rate (R) by using the formula \(P = B \times R \) or \(R = \frac{P}{B} \) or \(B = \frac{P}{R} \). Naturally, there are three types of percent problems in the CLAST. The definitions we need are next.

<table>
<thead>
<tr>
<th>T</th>
<th>TERMINOLOGY--BASE, PERCENTAGE AND RATE</th>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>The base or total is the standard used for comparison purposes.</td>
<td>In the expression 30% of 50 = 15, the base is 50 (the total)</td>
</tr>
<tr>
<td>2.</td>
<td>The percentage is the part being compared with the base or total.</td>
<td>In the expression 30% of 50 = 15, the number 15 is the percentage.</td>
</tr>
<tr>
<td>3.</td>
<td>The percent or rate is the part indicating the ratio of the percentage to the base.</td>
<td>In the expression 30% of 50 = 15, the percent or rate is 30%.</td>
</tr>
<tr>
<td></td>
<td>Note that (\frac{15}{50} = \frac{30}{100} = 30%)</td>
<td></td>
</tr>
</tbody>
</table>

| ANSWERS | 1. 6 | 2. 31.2 | 3. 200 | 4. 5 | 5. 20% | 6. 200% |
CLAST EXAMPLES
Example

4. What is 10% of 90?

A. $\frac{1}{9}$ B. 9 C. 90 D. 9%

Stop and think! $10\% = \frac{10}{100} = \frac{1}{10}$, so you need only find $\frac{1}{10}$ of 90 or 9. The answer must be B. Now you can look at the solution.

Solution

Let us translate the problem:

\[
\text{What is } 10\% \text{ of } 90\
\]

\[
\downarrow \quad \downarrow \quad \downarrow
\]

\[
\begin{align*}
n &= 0.10 \times 90 \\
&= 9
\end{align*}
\]

The answer is B.

Note: This same question, can be asked in 3 different ways:

1. What is 10% of 90?
2. 10% of 90 =
3. Find 10% of 90

Don’t be fooled by the wording, all these problems have the same answer.

Example

5. What is 120% of 30?

A. 0.25 B. 25 C. 36 D. 3.6

Remember your estimation! 100% of 30 is 30, so 120% of 30 must be more than 30. The only possible answer is 36. Look at the solution to see why.

Solution

As usual, let us translate the problem

\[
\text{What is } 120\% \text{ of } 30?\
\]

\[
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow
\]

\[
\begin{align*}
P &= 1.2 \times 30 \\
P &= 36
\end{align*}
\]

Now you can see that the answer is C.

Example

6. Find $50\frac{1}{2}$% of 90.

A. 454.5 B. 4.545
C. 45.45 D. 0.18

Since 50% of 90 is 45, the answer must be a little more than 45. It must be C. The solution shows you why, but be careful with the decimal point when multiplying decimals.

Solution

Find $50\frac{1}{2}$% of 90 is translated as:

\[
P = 50\frac{1}{2}\% \text{ of } 90, \text{ that is, }
\]

\[
P = 50.5\% \times 90 \quad (\text{Since } \frac{1}{2} = 0.5)
\]

\[
= 0.505 \times 90
\]

\[
= 45.450
\]

\[
= 45.45
\]

The answer is C as expected.
Example

7. 5 is what percent of 20?

A. 0.25 B. 4% C. \(\frac{1}{4} \) D. 25%

Since you are asked for the percent your answer must be written as a percent.
(B or D).

This question can also be written as:

1. What percent of 20 is 5?
2. Find what percent of 20 is 5.

Example

8. 60 is what percent of 40?

A. 200% B. 150% C. 1.5% D. \(\frac{2}{3} \)%

Note that since 60 is greater than 40, the answer must be more than 100% (A or B).

Example

9. 12 is 40% of what number?

A. 0.3 B. 333 C. 4.8 D. 30

Hopefully, you can see that 12 is 50% of 24, so answers A, B and C are not plausible. It must be D.

The solution on the right hand side relies on the fact that both sides of an equation can be divided by the same non-zero number or on the fact that

\[B = \frac{P}{R} = \frac{12}{0.40}. \]

Also, you have to know how to divide by a decimal. (Remember, when dividing by a decimal, we start by making the divisor a whole number.)

Solution

\[
\begin{align*}
\text{5 is what percent of 20 means} \\
5 = R \times 20 \\
\end{align*}
\]

Since we need to find R, we divide both sides of the equation by 20 obtaining

\[\frac{5}{20} = \frac{R \times 20}{20} = R \]

(Remember that \(R = \frac{P}{B} \), so \(R = \frac{5}{20} \).)

Now, the answer must be written as a percent, so we write

\[R = \frac{5}{20} = \frac{25}{100} = 25\% \]

The answer is D.

Solution

We translate the problem as: \(60 = R \times 40 \)

or, dividing by 40, \(\frac{60}{40} = R \)

Thus, \(R = \frac{3}{2} = 1.5 = 150\% \).

The answer has to be a percent, and it is B.

Solution

The translation is:

\[
\begin{align*}
\text{12 is 40% of what number} \ ? \\
12 = 0.40 \times B \\
\end{align*}
\]

Since we need to find B, which is multiplied by 0.40, we undo this multiplication by dividing both sides by 0.40. Here is the original equation:

\[
\begin{align*}
12 = 0.40 \times B \\
12 \div 0.40 = \frac{0.40}{0.40} \times B = B \\
\end{align*}
\]

Thus, \(B = \frac{12}{0.40} = \frac{12 \times 100}{0.40 \times 100} = \frac{1200}{40} = 30. \)

The answer is D.
C. Real-World Problems Involving Percent

<table>
<thead>
<tr>
<th>Objective IVA2</th>
<th>CLAST SAMPLE PROBLEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>A company produced 500 computers at a plant in California and 800 computers at a plant in Florida. 20% of the computers from the California plant were lime colored and 10% of the Florida computers were lime colored. How many lime colored computers were produced?</td>
</tr>
<tr>
<td>2.</td>
<td>Pedro was told that if he used the ABC phone card he would only pay 60% as much as with his current phone card. The amount he paid for his current phone card was $90. How much money would Pedro save by using the ABC card?</td>
</tr>
<tr>
<td>3.</td>
<td>A computer regularly sells for $800. If the computer is purchased at the University bookstore, students receive a 5% discount. The tax rate is 7%. The student decides to buy the computer at the University bookstore. How much will the student have to pay for the computer including the tax?</td>
</tr>
</tbody>
</table>

Now that you know how to solve percent problems you need to know how to apply this knowledge to solve real-world problems involving percents. This is a CLAST area in which many students encounter difficulties, but don't panic; we will give you a proven method for tackling any word problem. The procedure is as easy as 1-2-3-4-5!

Here are the steps you need.

1. **R**ead the problem. Not once or twice but until you understand it.
2. **S**elect the unknown, that is, find out what the problem asks for.
3. **T**ranslate the problem and think of a plan to solve it
4. **U**se the techniques you are studying to carry out the plan.
5. **V**erify the answer.

If you look at the first letter in each of the steps, you will realize why we call this the **R-S-T-U-V** procedure. Use it from here on!

| ANSWERS | 1. 180 | 2. $36 | 3. $813.20 |

Copyright © Houghton Mifflin Company. All rights reserved.
Example 10

Gladys was told that if she tuned her car she would use only 80% as much gasoline. If she was using 120 gallons of gas every month, how many gallons did Gladys save by having her car tuned?

A. 96 gallons
B. 16.6 gallons
C. 24 gallons
D. 40 gallons

Solution

1. **Read the problem carefully.**
2. **Select the unknown.**
 We want to find the amount of gallons saved by tuning the car.
3. **Translate the problem and think of a plan to solve it.**
 Since she uses 80% as much gas, Gladys saves 20% (100% - 80%) of the 120 gallons. Thus, the gallons saved are 20% of 120.
4. **Use the techniques we studied to carry out the plan.**
 \[g = 0.20 \times 120 = 24 \text{ gallons} \]
 The answer is C.
5. **Verify the answer.**
 If 24 gallons out of 120 are saved, the percent saved is \(\frac{24}{120} = \frac{1}{5} = 20\% \)

Example 11

During a certain week, 3% of the computers manufactured at plant A were defective, and 10% of the computers manufactured at plant B were defective. Plant A produced 300 computers and plant B produced 250. How many defective computers were produced?

A. 9
B. 25
C. 34
D. 72

Solution

1. **Read the problem carefully**
2. **Select the unknown, the number of defective computers**
3. **Translate the problem.**
 3% of 300 and 5% of 250 are defective
4. **Use the techniques studied.**
 \[\text{3\% of 300} = 0.03 \times 300 = 9 \]
 \[\text{10\% of 250} = 0.10 \times 250 = 25 \]
 The answer is 25 + 9 = 34, or C
WARM-UPS A
1. If 20 is decreased to 8 what is the percent decrease?
2. If 30 is decreased to 12, what is the percent decrease?
3. If you decrease 32 to 24, what is the percent decrease?
4. If 30 is increased to 36, what is the percent increase?
5. If 50 is increased to 70, what is the percent increase?
6. If you increase 50 to 80, what is the percent increase?
7. If you increase 80 by 30% of itself, what is the result?
8. If you increase 20 by 150% of itself, what is the result?
9. If you decrease 80 by 40% of itself, what is the result?
10. If you decrease 32 by 25% of itself, what is the result?

CLAST PRACTICE A

PRACTICE PROBLEMS: Chapter 1, # 34-37

11. If 20 is decreased to 12, what is the percent decrease?
 A. 60% B. 8% C. 40% D. 4%

12. If you increase 50 to 60, what is the percent increase?
 A. 2% B. 20% C. 100% D. 83%

13. If you increase 50 by 80% of itself, what is the result?
 A. 140 B. 90 C. 48 D. 10

14. If you decrease 40 by 75% of itself, what is the result?
 A. 35 B. 30 C. 10 D. 70
WARM-UPS B

15. What is 20% of 70?
16. What is 35% of 72?
17. What is 120% of 85?
18. What is 140% of 95?
19. 150% of 75 is ____
20. 140% of 92 is ____
21. Find $\frac{1}{2}$% of 70.
22. Find $\frac{1}{4}$% of 40.
23. Find $\frac{3}{4}$% of 80.
24. Find $50\frac{1}{4}$% of 300.
25. 7 is what percent of 35?
26. 9 is what percent of 18?
27. 24 is what percent of 6?
28. 36 is what percent of 24?
29. 12 is 40% of what number?
30. 18 is 30% of what number?
31. 6 is 60% of what number?
32. 42 is 84% of what number?
33. 0.8 is 40% of what number?
34. 16 is 16% of what number?

CLAST PRACTICE B

PRACTICE PROBLEMS: Chapter 1, #38-41

35. What is 90% of 70?
A. 630 B. 63% C. 63 D. $\frac{9}{7}$

36. What is 125% of 92?
A. 0.736 B. 115 C. 73.6 D. 11.5

37. Find 60$\frac{1}{2}$% of 40
A. 242 B. 2420 C. 2.420 D. 24.20

38. 6 is what percent of 24?
A. 0.25 B. $\frac{1}{4}$ C. 4% D. 25%

39. 90 is what percent of 60?
A. 1.5% B. $66\frac{2}{3}$% C. 150% D. 200%

40. 30 is 60% of what number?
A. 200 B. 50 C. 18 D. 0.5

Copyright © Houghton Mifflin Company. All rights reserved.
WARM-UPS C

41. This year Pedro made 80% as much money as last year. If Pedro made $12,500 last year, what was the decrease in Pedro's pay?

42. Maria was told that if she turned her air conditioner off, her electric bill would be 80% of last month's bill. If her bill last month amounted to $120, how much would Maria save?

43. An item was being sold for 70% of its regular price of $40. How much would you save if you bought this item?

44. An article that regularly sells for $25 is on sale at 20% off. How much do you save by buying this article, and what is the sale price?

45. Twanda was told that by insulating her hot water heater, she would only use 90% as much electricity. If her previous bill was for $98, how much did Twanda save by insulating her heater?

46. V. Tran was told that if he shopped at the Mart, he would only spend 75% as much. If Tran's previous bill was for $128, how much would he save if he shopped at the Mart?

47. A discount store sells merchandise at 60% of its regular price. If an item regularly sold for $120, how much would you save by buying it at the discount store?

48. An airplane ticket can be bought for 80% of its regular price. If the ticket is regularly sold for $290, how much would you save by buying the ticket at the discounted price?

CLAST PRACTICE C

PRACTICE PROBLEMS: Chapter 1, #42-44

49. Tyrone bought an economy car that used only 65% as much gas as his previous car. If Tyrone's old car used 80 gallons of gas last month, how much gas did Tyrone save by buying the economy car?

A. 52 gallons B. 28 gallons C. 43.75 gallons D. 30 gallons

50. Jane was told that if she bought her appliances at a discount store, she would only pay 75% as much. If the regular price for a refrigerator was $588, how much did Jane save by buying at the discount store?

A. $441 B. $161 C. $147 D. $133
EXTRA CLAST PRACTICE

51. An item that sells for $250 is put on sale at $200. What is the percent of decrease?
 A. 20% B. 25% C. 50% D. 80%

52. Maria weighs 120 pounds. Her weight increased by 15%. What is her new weight?
 A. 18 pounds B. 138 pounds C. 102 pounds D. 135 pounds

53. The main ingredient in a popular drink is sugar. In fact, the drink is 30% sugar. A person consumes 20 ounces of the drink. What amount of non-sugar ingredients was consumed by the person?
 A. 24 ounces B. 60 ounces C. 6 ounces D. 14 ounces

54. There are 265 students in a class. 190 are females and the rest are males. If 76 females and 25 males receive A's or B's, what percent of the males will receive an A or B?
 A. 29% B. $33\frac{1}{3}$% C. 38% D. 40%
1.6 WORD PROBLEMS

In this section, we shall continue the study of word problems. The difference between this section and the previous one is that the problems here do not involve percents but rather concentrate on applications involving decimals, fractions and a little number theory. We shall again use the R-S-T-U-V procedure to solve these problems.

A. Real-World Problems Not Involving Percent

Objective IVA1

CLAST SAMPLE PROBLEMS

1. A plumber charges $35 for a house call plus $25 an hour for labor. Find the cost of a plumbing job that took two hours to complete.

2. Each of two plants produce 240 VCR's per day. On a certain day, \(\frac{5}{6}\) of the production of one plant and \(\frac{7}{8}\) of the other are grape colored. How many are not grape-colored?

3. The scale on a map is 1\(\frac{1}{2}\) inches equals 30 miles. What is the distance between two points that are 16 inches apart on the map?

CLAST EXAMPLES

Example

1. A car rents for $180 per week plus $0.25 per mile. Find the cost of renting this car for a two-week trip of 400 miles for a family of 4.

A. $280
B. $380

C. $460
D. $760

Before you go on, note that the fact that the family consists of 4 members is immaterial! The cost would be the same regardless of the number of family members.

Solution

1. Read the problem.
2. Select the unknown.
 We want to find the cost of renting the car for a 400 mile, two-week trip.
3. Translate the problem and think of a plan.
 The cost C for the car consists of two parts: the weekly fee ($180 per week) and the mileage charge ($0.25 per mile) so we have to find the cost for the 2 weeks and add the mileage charge.
4. Use arithmetic to solve.
 Weekly fee: \(2 \times $180 = $360\)
 Mileage charge: \($0.25 \times 400 = $100\)
 Total Cost = $360 + $100 = $460.
 The correct answer is C.
5. The verification is left for you to do.

ANSWERS

1. $85
2. 70
3. 320
Example

2. A 4-ounce can of orange juice concentrate costs $0.40 and a 10-ounce can costs $1.20. How much money can be saved by buying 120 ounces of the more economical size?

A. $0.80 B. $12.00 C. $2.40 D. $14.40

You can do this problem by finding out the cost per ounce for the 4-ounce can ($0.40 / 4 = $0.10) and the 10-ounce ($1.20 / 10 = $0.12), and then find the cost of 120 ounces of each, but it is easier to start the computation by comparing the cost of 120 ounces of each.

Solution

1. Read the problem.
2. Select the unknown.
 We want to know the price of 120 ounces costing $0.40 for 4-ounces and the price of 120 ounces costing $1.20 for 10-ounces.
3. Translate the problem and think of a plan.
 We can buy 4-ounces of concentrate for $0.40, so we have 120 ounces we need to buy $\frac{120}{4} = 30$ of the 4-ounce cans or $\frac{120}{10} = 12$ of the 10-ounce cans. We can then compare prices and find out how much is saved.
4. Use arithmetic to solve.
 4-ounce cans: $30 \times $0.40 = 12.00
 10-ounce cans: $12 \times $1.20 = 14.40
 Savings: $14.40 - $12.00 = 2.40
 The correct answer is C.
5. Verify this!

Example

3. The fine for speeding in Florida is $54 plus $4 per each mile over the speed limit. A person paid a $102 fine, how many miles over the speed limit was this person driving?

A. 25.5 B. 26 C. 12 D. 13

Note that you have to pay the initial $54 regardless of your speed. You can also do this problem by multiplying each answer by $4 and adding $54 until you get $102. Note that A and B will not work!

Solution

1. Read the problem.
2. Select the unknown.
 We want to find the number of miles over the speed limit.
3. Translate the problem and think of a plan.
 The fine is $54 initially plus the $4 per mile over the speed limit.
4. Use arithmetic to solve.
 Since the person paid $102 - $54 or $48 for the miles over the speed limit the person was going $\frac{48}{4} = 12$ miles over the speed limit. The answer is C.
5. Verify this!
Example

4. A bookstore ordered 30 books for a class of 25 students. Each book cost the store $15 and was to be sold for $20. The bookstore must pay a service charge of $2 for each unsold book it returns to the publisher. If the bookstore had to return 5 books, how much profit did the bookstore make?

A. $115 B. $490 C. $140 D. $125

Note that the cost of returns must be subtracted from the initial profit.

Solution

1. Read the problem.

2. Select the unknown.
We want to find how much profit the bookstore made.

3. Translate the problem and think of a plan.
We have to find the profit per book, the profit for 25 books, and subtract the service charge for returning 5 books.

4. Use arithmetic to solve.
Profit per book: $20 - $15 = $5
Profit for 25 books: $5 × 25 = $125
Less service charge: $2 × 5 = -$10
Total profit = $115
The correct answer is A.

5. Verify this!

Example

5. A test consisted of 40 multiple choice and 30 essay questions. If Allyson got $\frac{3}{10}$ of the multiple choice and $\frac{3}{5}$ of the essay questions correct, how many questions did Allyson miss?

A. 28 B. 41 C. 12 D. 40

Important: We want to find the number of questions missed, not the number of correct questions.

Solution

1. Read the problem.

2. Select the unknown.
We want the number of questions missed.

3. Translate the problem and think of a plan.
Since Allyson got $\frac{3}{10}$ of the multiple choice questions, he missed $\frac{7}{10}$ of 40.
He also missed $\frac{2}{5}$ of the 30 essay questions.

4. Use arithmetic to solve.
Missed multiple choice: $\frac{7}{10} \times 40 = 28$
Missed essay: $\frac{2}{5} \times 30 = 12$
Total missed: 28 + 12 = 40
The answer is D.

5. The verification is left for you.
B. Number Theory

Objective IVA3

CLAST SAMPLE PROBLEMS

1. How many whole numbers leave a remainder of 2 when divided into 56 and a remainder of 1 when divided into 28?
2. Find the smallest positive multiple of 3 that leaves a remainder of 3 when divided by 5 and a remainder of 5 when divided by 7.

The problems here will deal with the structure and logic of arithmetic as it pertains to number theory. Most of the problems deal with multiples, factors, remainders and divisibility. Here is the terminology we need.

<table>
<thead>
<tr>
<th>T</th>
<th>TERMINOLOGY--MULTIPLES AND DIVISIBILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MULTIPLES</td>
</tr>
<tr>
<td></td>
<td>A number (m) is a multiple of (n) if: (m = n \times k)</td>
</tr>
<tr>
<td></td>
<td>where (k) is a natural number.</td>
</tr>
<tr>
<td></td>
<td>We also say that (n) is factor of (m).</td>
</tr>
<tr>
<td></td>
<td>The factors of a number (n) always include 1 and (n).</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIVISIBILITY</td>
</tr>
<tr>
<td></td>
<td>A number (n) is divisible by a number (m) if (n = m \times k) for some natural number (k). Note that this definition means that (n) is divisible by (m) if (n) is a multiple of (m).</td>
</tr>
<tr>
<td></td>
<td>If (n) is not divisible by (m), then there is a remainder (r) and we can write: (n ÷ m = q \text{ R } r)</td>
</tr>
<tr>
<td></td>
<td>This means that (n) divided by (m) yields a quotient (q) with a remainder (r). In this case (n = m \times q + r)</td>
</tr>
</tbody>
</table>

CLAST EXAMPLE

Example

6. Find the smallest positive multiple of 6 which leaves a remainder of 6 when divided by 10 and a remainder of 8 when divided by 14.

| A. 36 | B. 18 | C. 48 | D. 53 |

Solution

The best approach is to determine which of the choices satisfies the given conditions. Since we want a multiple of 6, choice D is eliminated. When 36 is divided by 10 the remainder is 6. Also, when 36 is divided by 14 the remainder is 8 as desired. Thus, A is the correct answer. (Try B and C.)

ANSWERS

1. Three (3, 9 and 27)
2. 33
Example 7. Find the largest positive integer which is a factor of both 18 and 30 and is also a factor of the difference of 18 and 30.

A. 2 B. 3 C. 6 D. 12

Solution

We start by listing the factors of 18, 30 and the difference of 18 and 30, which is 12.

Factors of 18: 1, 2, 3, 6, 9, 18
Factors of 30: 1, 2, 3, 5, 6, 10, 15, 30
Factors of 12: 1, 2, 3, 6, 12

The largest positive integer appearing on all of the three lists is 6. The answer is C.

Example 8. How many whole numbers leave a remainder of 3 when divided into 31 and a remainder of 4 when divided into 25?

A. 0 B. 1 C. 2 D. 3

Note: This time, we are not looking for a particular number. We are looking for how many numbers will satisfy the two given conditions.

Solution

Start with the 25 (the smaller of the two given numbers). Try dividing by 2 (the remainder is 1), by 3 (the remainder is 1) and so on. The numbers that leave a remainder of 4 when divided into 25 are 7 and 21. When the 7 is divided into 31, the remainder is indeed 3. When the 21 is divided into 31, the remainder is 10. This means that there is only one (1) number satisfying both conditions: the number 7, so the answer is B.

Section 1.6 Exercises

WARM-UPS A

1. A car rents for $210 per week plus $0.20 per mile. Find the cost of renting this car for a three-week trip of 500 miles for a family of 5.

2. A checking account charges $10 per month, plus $0.20 per check. Find the monthly charge for a month in which 53 checks were written to 47 individuals.

3. A 4-ounce can of tuna costs $0.95 while a 10-ounce can costs $2.50. How much would you save by buying 5 pounds (80 ounces) of the more economical size?

4. A 4-ounce can of sardines costs $0.48 and a 6 ounce can costs $0.66. How much would you save by buying 6 pounds (96 ounces) of the more economical size?
5. A checking account charges $8 per month, plus $0.15 per check. How many checks were written in a month in which the total charges amounted to $14.45?

6. The library fines for overdue books are $0.50 for the first day plus $0.20 for each additional day. If the fine for a book amounted to $2.90, how many days was the book overdue?

7. A frame store ordered 20 special frames at a cost of $35 each. If the store sold 16 of the frames for $40 each and returned the other 4 to the manufacturer at a service charge of $2 each, how much profit did the store make?

8. A software store ordered from the manufacturer 22 virus-detecting programs costing $20 each and selling for $30. After giving 7 of the programs to their best customers and selling the other 15, how much did the store have to send the manufacturer?

9. There were 30 multiple choice and 10 essay questions on Rhonda's test. If she got \(\frac{4}{5} \) of the multiple-choice and \(\frac{3}{10} \) of the essay questions correct, how many questions did Rhonda miss?

10. Two classes each have an enrollment of 24 students. On a certain day \(\frac{3}{4} \) of one class and \(\frac{5}{8} \) of the other are present. How many students are absent from the two classes?

CLAST PRACTICE A

PRACTICE PROBLEMS: Chapter 1, # 45-47

11. A caterer charges $250 per banquet plus $6.50 a plate. Find the cost of two banquets in which the attendance was 25 and 30 persons, respectively.

A. $357.50 B. $607.50 C. $506.50 D. $857.50

12. An 8-ounce can of tomato sauce costs $0.80 and a 20 ounce can costs $2.40. How much money can be saved by buying 120 ounces of the more economical size?

A. $2.40 B. $14.40 C. $12.00 D. $0.80

13. The library fine for overdue books is 20¢ for the first day and 10¢ for each additional day. If a borrower paid $1.60 for an overdue book, how many days was the book overdue?

A. 16 B. 14 C. 15 D. 18
14. A jewelry store ordered 30 graduation rings for a class of 25 students. Each ring cost the store $150 and was to be sold for $200. The store must pay a $20 service charge for each returned ring. If the store had to return 5 rings, how much profit did the store make?

A. $1400 B. $1150 C. $4900 D. $1250

15. There were 40 multiple choice and 30 essay questions on Becky's test. If Becky got $\frac{7}{10}$ of the multiple-choice and $\frac{9}{10}$ of the essay questions correct, how many questions did Becky miss?

A. 16 B. 12 C. 3 D. 15

WARM-UPS B

16. Find the smallest positive multiple of 5 which leaves a remainder of 3 when divided by 7 and a remainder of 5 when divided by 8.

17. Find the smallest positive multiple of 9 which leaves a remainder of 3 when divided by 6 and a remainder of 1 when divided by 4.

18. How many whole numbers leave a remainder of 5 when divided into 29 and a remainder of 5 when divided into 137?

19. How many whole numbers leave a remainder of 2 when divided into 34 and a remainder of 3 when divided into 19?

CLAST PRACTICE B PRACTICE PROBLEMS: Chapter 1, #48, 49

20. Find the smallest positive multiple of 8 which leaves a remainder of 8 when divided by 10 and a remainder of 6 when divided by 14.

A. 108 B. 98 C. 88 D. 48

21. How many whole numbers leave a remainder of 2 when divided into 56 and a remainder of 1 when divided into 28.

A. 3 B. 4 C. 2 D. 5
EXTRA CLAST PRACTICE

22. How many whole numbers leave a remainder of 3 when divided into 31 and a remainder of 4 when divided into 25?
A. 0 B. 1 C. 2 D. 3

23. A worker is paid $6.00 per hour for the first 40 hours she works. She is paid an additional $2 per hour for each hour over 40 that she works. How much will she earn if she works 52 hours in one week?
A. $312 B. $248 C. $224 D. $376

24. Find the largest positive integer which is a factor of both 18 and 30 and is also a factor of the sum of 18 and 30.
A. 2 B. 3 C. 6 D. 54

25. Which is the largest whole number divisible by 7 and a factor of 84?
A. 14 B. 28 C. 42 D. 84

26. What is the smallest number which leaves a remainder of 3 when divided by 4, a remainder of 2 when divided by 3 and a remainder of 1 when divided by 2?
A. 7 B. 11 C. 17 D. 21

27. The three digits of a number are X36. Find the largest digit X so that the number is divisible by 9.
A. 3 B. 6 C. 9 D. 6

28. What is the largest even number that is also prime?
A. 1 B. 2 C. 3 D. There is none