A set is a collection of objects and is usually denoted with a capital letter.

The objects in a set are called members or elements.

Symbols

- ∈ - “is a member of”
- ∉ - “is not a member of”

Examples

Consider the two sets $A = \{1, 2, 3, 4, 5, 6\}$ and $B = \{2, 4, 6, 8\}$.

Answer True or False.

- a) $3 \in A$
- b) $1 \notin B$
- c) $8 \in A$

Solutions

The first statement is read “Three is a member of set A.” The statement is true.

The second statement is read “One is not a member of set B.” The statement is true.

The last statement is read “Eight is a member of set A.” The statement is false.

Union

The union of two sets, denoted $A \cup B$, is the set of all elements from sets A, B, or both.

Intersection

The intersection of two sets, denoted by $A \cap B$, is the set of elements that are common to both sets A and B.

Example

Let $A = \{1, 2, 3, 4, 5, 6\}$ and $B = \{2, 4, 6, 8\}$

d) Find $A \cup B$.

Solution

$A \cup B = \{1, 2, 3, 4, 5, 6, 8\}$
Example

e) Find $A \cap B$.

Solution

\[A \cap B = \{2, 4, 6\} \]

\[
\begin{array}{ccc}
A & \cap & B \\
1 & 2 & 3 \\
3 & 4 & 6 \\
5 & 6 & 8 \\
\end{array}
\]

Special Sets

The empty set contains no members. It is denoted by \{\} or \emptyset.
The universal set contains all possible elements. It is denoted by U.
The complement of a set contains elements in the universal set that do not belong to the set under consideration. It is denoted by A'.

Example

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$ and $A = \{2, 4, 6, 8, 9, 10, 11\}$

Solution

\[A' = \{1, 3, 5, 7, 12\} \]

Venn Diagrams

Venn Diagrams are used to give a visual representation of sets and their relationships. The universal set is shown by a rectangle. All other sets are shown by circles inside the universal set.

Consider the shaded regions for the sets mentioned.
Disjoint sets \(A \) and \(B \) have no common elements.

The intersection of disjoint sets is the empty set.

\[A \cap B = \emptyset \]

\(A \) is a subset of \(B \) if all members of \(A \) are contained in \(B \).

Note that \(B \) is not a subset of \(A \).

Example

\(g) \) Put the following information in a Venn Diagram.

\[U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \]
\[A = \{1, 2, 3, 4, 5, 6\} \]
\[B = \{2, 4, 6, 8\} \]
\[C = \{10\} \]
Examples

h) Consider the Venn Diagram and find \(U, A, B, C, A \cap B, A \cup B, \) and \(B \cap C. \)

\[
\begin{align*}
U & = \{1, 2, 3, 4, 5, 6\} \\
A & = \{2, 3, 4\}; \quad B = \{4, 5\}; \quad C = \{3\} \\
A \cap B & = \{4\} \\
A \cup B & = \{2, 3, 4, 5\} \\
B \cap C & = \{}
\end{align*}
\]

Solutions

i) Consider the Venn Diagram below.

Set \(B \) is a subset of set \(A \) because the set \(B \) is contained in the set \(A \).

Sets \(B \) and \(C \) are disjoint: the two sets have no common elements.

Describe the relationship between sets \(A \) and \(B \), and the relationship between sets \(B \) and \(C \).

Check Your Progress 1.1

For Questions 1 – 4, use the Venn Diagram below.

1. Find \(U \).
2. Find \(B \).
3. Find \(A \cap B \).
4. Find \(B \cup C \).
For Questions 5 – 8, use the Venn Diagram below.

5. Find U.
6. Find B.
7. Find $A \cap B$.
8. Find $C \cup A$.

For Questions 9 and 10, use the Venn Diagram below.

9. Name two disjoint sets.
10. Name two intersecting sets.

For Questions 11 - 15, use the Venn Diagram below to fill in the blanks.

11. A is a subset of ____________.
12. C is a subset of ____________.
13. B is a subset of ____________.
14. Sets B and C intersect at ______.
15. Sets A and B intersect at ____________.